Search results for: Dose measurement
153 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.
Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047152 Investigating the Usability of a University Website from the Users’ Perspective: An Empirical Study of Benue State University Website
Authors: Abraham Undu, Stephen Akuma
Abstract:
Websites are becoming a major component of an organization’s success in our ever globalizing competitive world. The website symbolizes an organization, interacting or projecting an organization’s principles, culture, values, vision, and perspectives. It is an interface connecting organizations and their clients. The university, as an academic institution, makes use of a website to communicate and offer computing services to its stakeholders (students, staff, host community, university management etc). Unfortunately, website designers often give more consideration to the technology, organizational structure and business objectives of the university than to the usability of the site. Website designers end up designing university websites which do not meet the needs of the primary users. This empirical study investigated the Benue State University website from the point view of students. This research was realized by using a standardized website usability questionnaire based on the five factors of usability defined by WAMMI (Website Analysis and Measurement Inventory): attractiveness, controllability, efficiency, learnability and helpfulness. The result of the investigation showed that the university website (https://portal.bsum.edu.ng/) has neutral usability level because of the usability issues associated with the website. The research recommended feasible solutions to improve the usability of the website from the users’ perspective and also provided a modified usability model that will be used for better evaluation of the Benue State University website.
Keywords: Usability, usability factors, university websites, user’s perspective, WAMMI, modified usability model, Benue State University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062151 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari
Abstract:
Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.
Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012150 Toxicological and Histopathological Studies on the Effect of Tartrazine in Male Albino Rats
Authors: F. Alaa Ali, S. A. Sherein Abdelgayed, S. Osama. EL-Tawil, M. Adel Bakeer
Abstract:
Tartrazine is an organic azo dyes food additive widely used in foods, drugs, and cosmetics. The present study aimed to investigate the toxic effects of tartrazine on kidneys and liver biomarkers in addition to the investigation of oxidative stress and change of histopathological structure of liver and kidneys in 30 male rats. Tartrazine was orally administrated daily at dose 200 mg/ kg bw (1/ 10 LD50) for sixty days. Serum and tissue samples were collected at the end of the experiment to investigate the underlying mechanism of tartrazine through assessment oxidative stress (Glutathione (GSH), Superoxide dismutase (SOD) and malondialdehyde (MDA) and biochemical markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), Total protein and Urea). Liver and kidneys tissue were collected and preserved in 10% formalin for histopathological examination. The obtained values were statistically analyzed by one way analysis of variance (ANOVA) followed by multiple comparison test. Biochemical analysis revealed that tartrazine induced significant increase in serum ALT, AST, total protein, urea level compared to control group. Tartrazine showed significant decrease in liver GSH and SOD where their values when compared to control group. Tartrazine induced increase in liver MDA compared to control group. Histopathology of the liver showed diffuse vacuolar degeneration in hepatic parenchyma, the portal area showed sever changes sever in hepatoportal blood vessels and in the bile ducts. The kidneys showed degenerated tubules at the cortex together with mononuclear leucocytes inflammatory cells infiltration. There is perivascular edema with inflammatory cell infiltration surrounding the congested and hyalinized vascular wall of blood vessel. The present study indicates that the subchronic effects of tartrazine have a toxic effect on the liver and kidneys together with induction of oxidative stress by formation of free radicals. Therefore, people should avoid the hazards of consuming tartrazine.
Keywords: Albino rats, tartrazine, toxicity, pathology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201149 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches
Authors: Fereydoon Sarmadian, Ali Keshavarzi
Abstract:
Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.
Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819148 Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary
Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős
Abstract:
In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles.Keywords: Air, PM2.5, benzo(a)pyrene, polycyclic aromatic hydrocarbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509147 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416146 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)
Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad
Abstract:
Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377145 Saliva Cortisol and Yawning as a Predictor of Neurological Disease
Authors: Simon B. N. Thompson
Abstract:
Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.
Keywords: Cortisol, Diagnosis, Neurological Disease, Thompson Cortisol Hypothesis, Yawning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549144 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties
Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari
Abstract:
Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.
Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446143 Quantifying the Second-Level Digital Divide on Sub-National Level
Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer
Abstract:
Digital divide, the gap in the access to the world of digital technologies and the socio-economic opportunities that they create is an important phenomenon of the XXI century. This gap may exist between countries, regions within a country or socio-demographic groups, creating the classes of “digital have and have nots”. While the 1st-level divide (the difference in opportunities to access the digital networks) was demonstrated to diminish with time, the issues of 2nd level divide (the difference in skills and usage of digital systems) and 3rd level divide (the difference in effects obtained from digital technology) may grow. The paper offers a systemic review of literature on the measurement of the digital divide, noting the certain conceptual stagnation due to the lack of effective instruments that would capture the complex nature of the phenomenon. As a result, many important concepts do not receive the empiric exploration they deserve. As a solution the paper suggests a composite Digital Life Index, that studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. The application of the model to the study of the digital divide between Russian regions and between cities in China have brought promising results. The paper advances the existing methodological literature on the 2nd level digital divide and can also inform practical decision-making regarding the strategies of national and regional digital development.
Keywords: Digital transformation, second-level digital divide, composite index, digital policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463142 Calibration of the Discrete Element Method Using a Large Shear Box
Authors: Corné J. Coetzee, Etienne Horn
Abstract:
One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672141 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782140 Compact Optical Sensors for Harsh Environments
Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi
Abstract:
Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.
Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130139 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite
Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo
Abstract:
This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430138 Attitudes of Academic Staff towards the Use of Information Communication Technology as a Pedagogical Tool for Effective Teaching in FCT College of Education, Zuba-Abuja, Nigeria
Authors: Salako Emmanuel Adekunle
Abstract:
With numerous advantages of ICT in teaching such as using images to improve the retentive memory of students, academic staff is yet to deliver instructions adequately and effectively due to no power supply, lack of technical supports and non-availability of functional ICT tools. This study was conducted to investigate the attitudes of academic staff towards the use of information communication technology as a pedagogical tool for effective teaching in FCT College of Education, Zuba-Abuja, Nigeria. A sample of 200 academic staff from five schools/faculties was involved in the study. The respondents were selected by using simple random sampling technique (SRST). A questionnaire was developed and validated by the experts in Measurement and Evaluation, and reliability co-efficient of 0.85 was obtained. It was used to gather relevant data from the respondents. This study revealed that the respondents had positive attitudes towards the use of ICT as a pedagogical tool for effective teaching. Also, the uses of ICT by the academic staff included: to encourage closer relationship for attainment of higher academic, and to deliver instructions effectively. The study also revealed that there is a significant relationship between the attitudes and the uses of ICT by the academic staff. Based on these findings, some recommendations were made which include: power supply should be provided to operate ICT facilities for effective teaching, and technical assistance on ICT usage for effective delivery of instructions should be provided among other recommendations.
Keywords: Academic staff, attitudes, information communication technology, pedagogical tool, teaching and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985137 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour
Authors: Cecilia Perri, Vincenzo Corvello
Abstract:
The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.Keywords: Adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102136 A Piscan Ulcerative Aeromonas Infection
Authors: Ibrahim M. S. Shnawa, Bashar A. H. E. Alsadi, Kalida K. Alniaem
Abstract:
In the immunologic sense, clinical infection is a state of failure of the immune system to combat the pathogenic weapon of the bacteria invading the host. A motile gram negative vibroid organism associated with marked mono and poly nuclear cell responses was traced during the examination of a clinical material from an infected common carp Cyprinus carpio. On primary plate culture, growth was shown to be pure, dense population of an Aeromonas-like colony morphotype. The pure isolate was found to be; Aerobic, facultatively anaerobic, non-halophilic, grew at 0C, and 37C, oxidase positive utilizes glucose through fermentative pathway, resist 0/129 and novobiocin, produces alanine and lysine decarboxylases but non-producing ornithine dehydrolases. Tests for the in vitro determinants of pathogenicity has shown to be; Betahaemolytic onto blood agar, gelatinase, casienase and amylase producer. Three in vivo determinants of pathogenicity were tested as, the lethal dose fifty, the pathogenesis and pathogenicity. It was evident that 0.1 milliliter of the causal bacterial cell suspension of a density 1 x 107 CFU/ml injected intramuscularly into an average of 100gms fish toke five days incubation period, then at the day six morbidity and mortality were initiated. LD50 was recorded at the day 12 post-infection. Use of an LD50 doses to study the pathogenicity, reveals mononuclear and polynuclear cell responses, on examining the stained direct films of the clinical materials from the experimentally infected fish. Re-isolation tests confirm that the reisolant is same. The course of the infection in natural case was shown manifestation of; skin ulceration, haemorrhage and descaling. On evisceration, the internal organs were shown; congestion in the intestines, spleen and, air sacs. The induced infection showed a milder form of these manifestations. The grading of the virulence of this organism was virulent causing chronic course of infections as indicated from the pathogenesis and pathogenicity studies. Thus the infectious bacteria were consistent with Aeromonas hydrophila, and the infection was chronic.Keywords: Piscan, inflammatory respnonse, pure culture, pathogen, chronic, infection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042135 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835134 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040133 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application
Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem
Abstract:
Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.
Keywords: Biodegradable metal, biomedical application mechanical properties, powder metallurgy, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993132 The Effectiveness of Solution-Focused Group Therapy on Improving Depressed Mothers of Child Abuser Families
Authors: Roya Maqami, Kaveh Qaderi Bagajan, Mohammad Mahdi Yousefi, Saeed Moradi
Abstract:
The purpose of this study is to investigate the efficacy of solution-focused group therapy on improving the depressed mothers of child abuser families. This study was carried out in the form of a semi-pilot, pre-test and post-test on two groups (experimental and control). Subjects include all mothers and their children that are the members of Shush and Naser Khosro child home. Beck Depression Inventory and Child Trauma Questionnaire were used to collect data. First, child abuse questionnaire was completed by children, Then Beck Depression Inventory was completed by their mothers that 22 of them were recognized as depressed and randomly divided in two groups of experimental and control. After applying pre-test for both of these groups, the intervention of solution- focused group therapy was performed in five sessions on experimental group. Finally, post-test was applied on both groups and subsequently in a month, follow-up test was performed. T-test, multivariate variance, and repeated measurement analysis of variance were used to analyze the data. According to the findings, it can be concluded that this therapy leads to the improvement of depressed mother's mood. As a result, the intervention of solution-focused group therapy is useful in order to improve the depressing mood of mothers of child abuser families.
Keywords: Child Abuse, Depressed Mothers, Child Abuser Families, Solution-focused Group Therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782131 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications
Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf
Abstract:
In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.
Keywords: Planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C & Ku.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967130 Empirical Evidence on Equity Valuation of Thai Firms
Authors: Somchai Supattarakul, Anya Khanthavit
Abstract:
This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.Keywords: Dividend Discount Model, Equity Valuation Model, Residual Income Model, Thai Stock Market
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890129 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894128 Antibiotic Prescribing in the Acute Care in Iraq
Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas
Abstract:
Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.
Keywords: Acute care, antibiotic misuse, Iraq, prescribing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984127 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects.
Keywords: SCC, concrete, pumice, zeolite, durability, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885126 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear
Authors: Barenten Suciu, Yuya Nakamoto
Abstract:
Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.
Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723125 Verification of Sr-90 Determination in Water and Spruce Needles Samples Using IAEA-TEL-2016-04 ALMERA Proficiency Test Samples
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of 90Sr in environmental samples has been widely developed with several radioanlytical methods and radiation measurement techniques since 90Sr is one of the most hazardous radionuclides produced from nuclear reactors. Liquid extraction technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) to separate and purify 90Y and Cherenkov counting using liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed and performed at our institute, the Office of Atoms for Peace. The approach is inexpensive, non-laborious, and fast to analyse 90Sr in environmental samples. To validate our analytical performance for the accurate and precise criteria, determination of 90Sr using the IAEA-TEL-2016-04 ALMERA proficiency test samples were performed for statistical evaluation. The experiment used two spiked tap water samples and one naturally contaminated spruce needles sample from Austria collected shortly after the Chernobyl accident. Results showed that all three analyses were successfully passed in terms of both accuracy and precision criteria, obtaining “Accepted” statuses. The two water samples obtained the measured results of 15.54 Bq/kg and 19.76 Bq/kg, which had relative bias 5.68% and -3.63% for the Maximum Acceptable Relative Bias (MARB) 15% and 20%, respectively. And the spruce needles sample obtained the measured results of 21.04 Bq/kg, which had relative bias 23.78% for the MARB 30%. These results confirm our analytical performance of 90Sr determination in water and spruce needles samples using the same developed method.
Keywords: ALMERA proficiency test, Cherenkov counting, determination of 90Sr, environmental samples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857124 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation
Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen
Abstract:
In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.
Keywords: Air tunnel, ground heat exchanger, raft foundation, residential building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421