Search results for: steel sheet
833 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel
Authors: Roman Kalvin, Anam Nadeem, Saba Arif
Abstract:
Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.Keywords: Turbocharger, turbine blades, structural steel, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940832 An Ontology for Investment in Chinese Steel Company
Authors: Liming Chen, Baoxin Xiu, Zhaoyun Ding, Bin Liu, Xianqiang Zhu
Abstract:
In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed.
Keywords: Financial ontology, steel company, supply chain, ontology reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595831 Effect of Processing Methods on Texture Evolution in AZ31 Mg Alloy Sheet
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
Textures of AZ31 Mg alloy sheets were evaluated by using neutron diffraction method in this study. The AZ31 sheets were fabricated either by conventional casting and subsequent hot rolling or strip casting. The effect of warm rolling was investigated using the AZ31 Mg alloy sheet produced by conventional casting. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure of conventionally cast specimen was found to be partially recrystallized structures. Grain refinement was found to occur actively during the warm rolling. The (0002),(10-10) (10-11),and (10-12) complete pole figures were measured using the HANARO FCD (Neutron Four Circle Diffractometer) and ODF were calculated. The major texture of all specimens can be expressed by ND//(0001) fiber texture. Texture of hot rolled specimen showed the strongest fiber component, while that of strip cast sheet seemed to be similar to random distribution.
Keywords: Mg alloy, texture, pole figure, ODF, neutron diffraction, warm rolling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233830 Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers microhardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures thereby improving the integrity of the material.
Keywords: Austenite, Ferrite, Grain size, Hardness, Martensite, Microstructure and stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4421829 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams
Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady
Abstract:
This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.Keywords: Steel I-beams, local buckling, slender, stiffener, thin walled section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664828 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings
Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi
Abstract:
Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.
Keywords: SMC, LD-SMC, A-SMC, HGM, damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718827 Establishing a New Simple Formula for Buckling Length Factor (K) of Rigid Frames Columns
Authors: Ehab Hasan Ahmed Hasan Ali
Abstract:
The calculation of buckling length factor (K) for steel frames columns is a major and governing processes to determine the dimensions steel frame columns cross sections during design. The buckling length of steel frames columns has a direct effect on the cost (weight) of using cross section. A new formula is required to determine buckling length factor (K) by simplified way. In this research a new formula for buckling length factor (K) was established to determine by accurate method for a limited interval of columns ends rigidity (GA, GB). The new formula can be used ease to evaluate the buckling length factor without needing to complicated equations or difficult charts.Keywords: Buckling length, New formula, Curve fitting, Simplification, Steel column design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258826 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.
Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698825 The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling
Authors: Tsung-Chia Chen
Abstract:
The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.
Keywords: Elasto-plastic, finite element, orthogonal pressing process, vertical steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351824 Effect of Impact Load on the Bond between Steel and CFRP Laminate
Authors: A. Al-Mosawe, R. Al-Mahaidi
Abstract:
Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.
Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566823 Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment
Authors: K. K. Saju, A. R. Reghuraj
Abstract:
High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance.Keywords: Conversion coatings, 410 stainless steel, black oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287822 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet
Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu
Abstract:
The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.
Keywords: Boundary layer, Nanofluid, Shrinking sheet, Brownian motion, Thermophoresis, Similarity solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806821 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel
Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec
Abstract:
Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.Keywords: Pearlite, retained austenite, thermo-mechanical treatment, TRIP steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849820 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet
Authors: A. T. Eswara
Abstract:
This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694819 Electrochemical Corrosion of Steels in Distillery Effluent
Authors: A. K. Singh, Chhotu Ram
Abstract:
The present work relates to the corrosivity of distillery effluent and corrosion performance of mild steel and stainless steels SS304L, SS316L, and 2205. The report presents the results and conclusions drawn on the basis of (i) electrochemical polarization tests performed in distillery effluent and laboratory prepared solutions having composition similar to that of the effluent (ii) the surface examination by scanning electron microscope (SEM) of the corroded steel samples. It is observed that pH and presence of chloride, phosphate, calcium, nitrite and nitrate in distillery effluent enhance corrosion, whereas presence of sulphate and potassium inhibits corrosion. Among the materials tested, mild steel is observed to experience maximum corrosion followed by stainless steels SS304L, SS316L, and 2205.
Keywords: Steel, distillery effluent, electrochemical polarization, corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086818 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel
Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali
Abstract:
The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525817 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423816 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction
Authors: Noor Fadiya Mohd Noor
Abstract:
The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.
Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077815 Chip Formation during Turning Multiphase Microalloyed Steel
Authors: V.Sivaraman, S. Sankaran, L. Vijayaraghavan
Abstract:
Machining through turning was carried out in a lathe to study the chip formation of Multiphase Ferrite (F-B-M) microalloyed steel. Taguchi orthogonal array was employed to perform the machining. Continuous and discontinuous chips were formed for different cutting parameters like speed, feed and depth of cut. Optical and scanning electron microscope was employed to identify the chip morphology.Keywords: Multiphase microalloyed steel, chip formation, Taguchi technique, turning, cutting parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641814 A Detailed Experimental Study of the Springback Anisotropy of Three Metals using the Stretching-Bending Process
Authors: A. Soualem
Abstract:
Springback is a significant problem in the sheet metal forming process. When the tools are released after the stage of forming, the product springs out, because of the action of the internal stresses. In many cases the deviation of form is too large and the compensation of the springback is necessary. The precise prediction of the springback of product is increasingly significant for the design of the tools and for compensation because of the higher ratio of the yield stress to the elastic modulus. The main object in this paper was to study the effect of the anisotropy on the springback for three directions of rolling: 0°, 45° and 90°. At the same time, we highlighted the influence of three different metallic materials: Aluminum, Steel and Galvanized steel. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to the direction of rolling. We also showed the role of lubrication in the reduction of the springback. Moreover, in this work, we have studied important characteristics in deep drawing process which is a springback. We have presented defaults that are showed in this process and many parameters influenced a springback. Finally, our results works lead us to understand the influence of grains orientation with different metallic materials on the springback and drawing some conclusions how to concept deep drawing tools. In addition, the conducted work represents a fundamental contribution in the discussion the industry application.Keywords: Deep-Drawing, Grains orientation, Laminate Tool, Springback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089813 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear
Authors: Barenten Suciu, Yuya Nakamoto
Abstract:
Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.
Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723812 Numerical Study of Steel Structures Responses to External Explosions
Authors: Mohammad Abdallah
Abstract:
Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.
Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775811 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed to the Chloride Ion
Authors: Erika J. Ruíz, Jairo R. Cortes, Willian A. Aperador
Abstract:
In this article was evaluated the protective effect of the alternative concrete obtained from the binary mixture of fly ash, and iron and steel slag. After mixing the cement with aggregates, structural steel was inserted in the matrix cementitious. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The chloride ion effect on the specimens accelerated under controlled conditions (3.5% NaCl and 25°C temperature). The impedance data were acquired in a range of 1 mHz to 100 kHz.
Keywords: Alternative concrete, corrosion, alkaline activation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417810 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916809 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.
Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72808 Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment
Authors: Anish H. Gandhi, Harit K. Raval
Abstract:
Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.Keywords: Carbon steel, Finite element analysis, Layeredmaterial, Springback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232807 Prediction of Bath Temperature Using Neural Networks
Authors: H. Meradi, S. Bouhouche, M. Lahreche
Abstract:
In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.
Keywords: LD converter, bath temperature, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836806 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel
Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha
Abstract:
The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.Keywords: Carbon steel, laser surface melting, microstructure, microhardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558805 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation
Authors: H. Rahman, T. Donchev, D. Petkova
Abstract:
Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.Keywords: Shear walls, internal FRP reinforcement, cyclic loading, energy dissipation and seismic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745804 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583