Search results for: cancer dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 636

Search results for: cancer dataset

546 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset

Authors: Essam Al Daoud

Abstract:

Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.

Keywords: Gradient boosting, XGBoost, LightGBM, CatBoost, home credit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9456
545 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
544 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
543 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Mandana Kariminejad, Ali Ghaffari

Abstract:

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
542 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
541 Culturally Enhanced Collaborative Filtering

Authors: Mahboobe Zardosht, Nasser Ghasem-Aghaee

Abstract:

We propose an enhanced collaborative filtering method using Hofstede-s cultural dimensions, calculated for 111 countries. We employ 4 of these dimensions, which are correlated to the costumers- buying behavior, in order to detect users- preferences for items. In addition, several advantages of this method demonstrated for data sparseness and cold-start users, which are important challenges in collaborative filtering. We present experiments using a real dataset, Book Crossing Dataset. Experimental results shows that the proposed algorithm provide significant advantages in terms of improving recommendation quality.

Keywords: Collaborative filtering, Cross-cultural, E-commerce, Recommender systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
540 Community Detection-based Analysis of the Human Interactome Network

Authors: Razvan Bocu, Sabin Tabirca

Abstract:

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.

Keywords: Betweenness centrality, interactome networks, proteinprotein interactions, protein communities, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
539 Biometric Authentication Using Fast Correlation of Near Infrared Hand Vein Patterns

Authors: Mohamed Shahin, Ahmed Badawi, Mohamed Kamel

Abstract:

This paper presents a hand vein authentication system using fast spatial correlation of hand vein patterns. In order to evaluate the system performance, a prototype was designed and a dataset of 50 persons of different ages above 16 and of different gender, each has 10 images per person was acquired at different intervals, 5 images for left hand and 5 images for right hand. In verification testing analysis, we used 3 images to represent the templates and 2 images for testing. Each of the 2 images is matched with the existing 3 templates. FAR of 0.02% and FRR of 3.00 % were reported at threshold 80. The system efficiency at this threshold was found to be 99.95%. The system can operate at a 97% genuine acceptance rate and 99.98 % genuine reject rate, at corresponding threshold of 80. The EER was reported as 0.25 % at threshold 77. We verified that no similarity exists between right and left hand vein patterns for the same person over the acquired dataset sample. Finally, this distinct 100 hand vein patterns dataset sample can be accessed by researchers and students upon request for testing other methods of hand veins matching.

Keywords: Biometrics, Verification, Hand Veins, PatternsSimilarity, Statistical Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
538 An Enhanced Support Vector Machine-Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects

Authors: Gehad S. Kaseb, Mona F. Ahmed

Abstract:

Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-ATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.

Keywords: Arabic, hybrid classification, sentiment analysis, tweets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
537 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images

Authors: F. Duarte

Abstract:

The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the acquisition of the sample images ended being very unreliable.

Keywords: Segmentation, classification, color space, skin tone, Fitzpatrick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13
536 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
535 Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA: A Review

Authors: L. B. Naves, L. Almeida

Abstract:

The development of Drugs Delivery System (DDS) has been widely investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientists have done in the medical environment, focusing on the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer.

Keywords: Cancer Therapy, Dressing Polymers, Melanoma, wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
534 ‘Memory Mate’ as Boundary Object in Cancer Treatment for Patients with Dementia

Authors: Rachel Hurdley, Jane Hopkinson

Abstract:

This article is based on observation of a cross-disciplinary, cross-institutional team that worked on an intervention called ‘Memory Mate’ for use in a UK Cancer Centre. This aimed to improve treatment outcomes for patients who had comorbid dementia or other memory impairment. Comorbid patients present ambiguous, spoiled identities, problematising the boundaries of health specialisms and frames of understanding. Memory Mate is theorised as a boundary object facilitating service transformation by changing relations between oncology and mental health care practice. It crosses the boundaries between oncology and mental health. Its introduction signifies an important step in reconfiguring relations between the specialisms. As a boundary object, it contains parallel, even contesting worlds, with potential to enable an eventual synthesis of the double stigma of cancer and dementia. Memory Mate comprises physical things, such as an animation, but its principal value is in the interaction it initiates across disciplines and services. It supports evolution of practices to address a newly emergent challenge for health service provision, namely the cancer patient with comorbid dementia/cognitive impairment. Getting clinicians from different disciplines working together on a practical solution generates a dialogue that can shift professional identity and change the culture of practice.

Keywords: Boundary object, cancer, dementia, interdisciplinary teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
533 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman

Abstract:

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
532 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi

Abstract:

Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.

Keywords: Tumor tissue, antibody, magnetic nanoparticle, CTCs capturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
531 Identification of Complex Sense-antisense Gene's Module on 17q11.2 Associated with Breast Cancer Aggressiveness and Patient's Survival

Authors: O. Grinchuk, E. Motakis, V. Kuznetsov

Abstract:

Sense-antisense gene pair (SAGP) is a pair of two oppositely transcribed genes sharing a common region on a chromosome. In the mammalian genomes, SAGPs can be organized in more complex sense-antisense gene architectures (CSAGA) in which at least one gene could share loci with two or more antisense partners. Many dozens of CSAGAs can be found in the human genome. However, CSAGAs have not been systematically identified and characterized in context of their role in human diseases including cancers. In this work we characterize the structural-functional properties of a cluster of 5 genes –TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199, termed TNFAIP1 / POLDIP2 module. This cluster is organized as CSAGA in cytoband 17q11.2. Affymetrix U133A&B expression data of two large cohorts (410 atients, in total) of breast cancer patients and patient survival data were used. For the both studied cohorts, we demonstrate (i) strong and reproducible transcriptional co-regulatory patterns of genes of TNFAIP1/POLDIP2 module in breast cancer cell subtypes and (ii) significant associations of TNFAIP1/POLDIP2 CSAGA with amplification of the CSAGA region in breast cancer, (ii) cancer aggressiveness (e.g. genetic grades) and (iv) disease free patient-s survival. Moreover, gene pairs of this module demonstrate strong synergetic effect in the prognosis of time of breast cancer relapse. We suggest that TNFAIP1/ POLDIP2 cluster can be considered as a novel type of structural-functional gene modules in the human genome.

Keywords: Sense-antisense gene pair, complex genome architecture, TMEM97, IFT20, TNFAIP1, POLDIP2, TMEM199, 17q11.2, breast cancer, transcription regulation, survival analysis, prognosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
530 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier

Authors: Khin May Win, Nan Sai Moon Kham

Abstract:

Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.

Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
529 Awareness for Air Pollution Impacts on Lung Cancer in Southern California: A Pilot Study for Designed Smartphone Application

Authors: M. Mohammed Raoof, A. Enkhtaivan, H. Aljuaid

Abstract:

This study follows the design science research methodology to design and implement a smartphone application artifact. The developed artifact was evaluated through three phases. The System Usability Scale (SUS) metric was used for the evaluation. The designed artifact aims to spread awareness about reducing air pollution, decreasing lung cancer development, and checking the air quality status in Southern California Counties. Participants have been drawn for a pilot study to facilitate awareness of air pollution. The study found that smartphone applications have a beneficial effect on the study’s aims.

Keywords: Air pollution, design science research, indoor air pollution, lung cancer, outdoor air pollution, smartphone application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312
528 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
527 Block-Based 2D to 3D Image Conversion Method

Authors: S. Sowmyayani, V. Murugan

Abstract:

With the advent of three-dimension (3D) technology, there are lots of research in converting 2D images to 3D images. The main difference between 2D and 3D is the visual illusion of depth in 3D images. In the recent era, there are more depth estimation techniques. The objective of this paper is to convert 2D images to 3D images with less computation time. For this, the input image is divided into blocks from which the depth information is obtained. Having the depth information, a depth map is generated. Then the 3D image is warped using the original image and the depth map. The proposed method is tested on Make3D dataset and NYU-V2 dataset. The experimental results are compared with other recent methods. The proposed method proved to work with less computation time and good accuracy.

Keywords: Depth map, 3D image warping, image rendering, bilateral filter, minimum spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
526 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
525 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features

Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli

Abstract:

This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.

Keywords: Data mining classification algorithms, entropy-baseddiscretization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
524 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
523 Evolutionary of Prostate Cancer Stem Cells in Prostate Duct

Authors: Zachariah Sinkala

Abstract:

A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.

Keywords: Fokker-Plank equations, global attractor, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
522 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
521 Evolution of Cord Absorbed Dose during of Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom

Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush

Abstract:

Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space, which it should pass through, before reaching the lesion. Specially, in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypopharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.

Keywords: 3D Treatment Planning, anthropomorphic phantom, larynx cancer, radiotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
520 Anticancer Effect of Doxorubicin Loaded Heparin based Super-paramagnetic Iron oxide Nanoparticles against the Human Ovarian Cancer Cells

Authors: Amaneh Javid, Shahin Ahmadian, Ali A. Saboury, Saeed Rezaei-Zarchi

Abstract:

This study determines the effect of naked and heparinbased super-paramagnetic iron oxide nanoparticles on the human cancer cell lines of A2780. Doxorubicin was used as the anticancer drug, entrapped in the SPIO-NPs. This study aimed to decorate nanoparticles with heparin, a molecular ligand for 'active' targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. The nanoparticles containing the anticancer drug DOX were prepared by a solvent evaporation and emulsification cross-linking method. The physicochemical properties of the nanoparticles were characterized by various techniques, and uniform nanoparticles with an average particle size of 110±15 nm with high encapsulation efficiencies (EE) were obtained. Additionally, a sustained release of DOX from the SPIO-NPs was successful. Cytotoxicity tests showed that the SPIO-DOX-HP had higher cell toxicity than the individual HP and confocal microscopy analysis confirmed excellent cellular uptake efficiency. These results indicate that HP based SPIO-NPs have potential uses as anticancer drug carriers and also have an enhanced anticancer effect.

Keywords: Heparin, A2780 cells, ovarian cancer, nanoparticles, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
519 Comparative in silico and in vitro Study of N-(1- Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as Adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemia, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, antiinflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilinoethyl) benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 μM whereas for doxorubicin is 7.2 μM.

Keywords: Anticancer, Auto Dock, Doxorubicin, Sulfonamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
518 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study

Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa

Abstract:

Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.

Keywords: Non melanoma skin cancer, Hail Region, histopathology, BCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
517 Evaluation of Systemic Immune-Inflammation Index in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A growing list of cancers might be influenced by obesity. Obesity is associated with an increased risk for the occurrence and development of some cancers. Inflammation can lead to cancer. It is one of the characteristic features of cancer and plays a critical role in cancer development. C-reactive protein (CRP) is under evaluation related to the new and simple prognostic factors in patients with metastatic renal cell cancer. Obesity can predict and promote systemic inflammation in healthy adults. BMI is correlated with hs-CRP. In this study, SII index and CRP values were evaluated in children with normal BMI and those within the range of different obesity grades to detect the tendency towards cancer in pediatric obesity. A total of one hundred and ninety-four children; thirty-five children with normal BMI, twenty overweight (OW), forty-seven obese (OB) and ninety-two morbid obese (MO) participated in the study. Age- and sex-matched groups were constituted using BMI-for age percentiles. Informed consent was obtained. Ethical Committee approval was taken. Weight, height, waist circumference (C), hip C, head C and neck C of the children were measured. The complete blood count test was performed. C-reactive protein analysis was performed. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. SII index values were progressively increasing starting from normal weight (NW) to MO children. There is a statistically significant difference between NW and OB as well as MO children. No significant difference was observed between NW and OW children, however, a correlation was observed between NW and OW children. MO constitutes the only group, which exhibited a statistically significant correlation between SII index and CRP. Obesity-related bladder, kidney, cervical, liver, colorectal, endometrial cancers are still being investigated. Obesity, characterized as a chronic low-grade inflammation, is a crucial risk factor for colon cancer. Elevated childhood BMI values may be indicative of processes leading to cancer, initiated early in life. Prevention of childhood adiposity may decrease the cancer incidence in adults. To authors’ best knowledge, this study is the first to introduce SII index values during obesity of varying degrees of severity. It is suggested that this index seems to affect all stages of obesity with an increasing tendency and may point out the concomitant status of obesity and cancer starting from very early periods of life.

Keywords: Children, c- reactive protein, systemic immune-inflammation index, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847