Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA: A Review
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA: A Review

Authors: L. B. Naves, L. Almeida

Abstract:

The development of Drugs Delivery System (DDS) has been widely investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientists have done in the medical environment, focusing on the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer.

Keywords: Cancer Therapy, Dressing Polymers, Melanoma, wound healing.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099624

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577

References:


[1] Harding K., Cutting K., Proce P., The cost-effectiveness of wound management protocols of care.British Journal of Nursing 2000.
[2] Chang K.W., Alagoof S., Ong K.T., Sim P.H., Pressure ulcersrandomised controlled trial comparing hydrocolloid and saline gauze dressing. Med. J. Malaysia. 1998.
[3] Debra J.B., Cheri O., Wound Healing: Technological innovations and market overview. 1998. 2:1-185
[4] Wichterle O., Lim D., Hydrophilic gels for biological use. 1960. Nature 185:117-118.
[5] Martin L., Wilson C.G., Koosha F., Tetley L., Gray A.I., Senel S. The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J. Control Release. 2002.
[6] Dealey C., Role of hydrocolloids in wound managements. 1993. Br J Nurs 2: 358-362.
[7] Hefferman A., Marrtin A.J., A comparison of modified form of Granuflex( Granuflex Extra Thin) and a conventional dressing in the management of lacerations, abrasions and minor operation wounds in an accident and emergency department.1994.J Accid Emerg Med 11: 227- 230.
[8] Thomas S., Hydrocolloids. J. Wound Care. 1992
[9] Moshakis V., Fordyce M.J., Griffiths J.D., McKinna J.A. Tegaderm versus gauze dressing in breast surgery. 1984. Br J Clin Pract 38: 149- 152.
[10] Kollenberg L.O., A new topical antibiotic delivery system. Surgical materials Testing Laboratory, Wales, UK: World wide wounds. 1998.
[11] Ramshaw J.A.M., Werkmeister J.A., Glatteur V., Collagen based biomaterials. Biotechnol. Rev. 1995. 13: 336-382.
[12] Ishihara M., et al, Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002. P 833- 840.
[13] Schwarzer T.P., Manufacturing principles of freeze-dried collagen sponges: Characteristics and application. New York: Marcel Dekker. Vol. 96. 1999. P. 359-372
[14] Morgan D.A., Wounds- What should a dressing formulary include? Hosp. Pharmacist. 2002 p.261-266.
[15] Thomas S., editor. Wounds and wound healing in: Wound management and dressing. 1st edition. London: Pharmaceutical Press. 1990. P.1-14.
[16] Khafagy E.I., Morishita M., Onuki Y., Takayama K., Current challenges in non-invasive insulin delivery system: a comparative review, Adv. Drug Deliv. Rev.59. 2007. p.1521-1546.
[17] Robinson J.R., Lee V.H.L., Controlled drug delivery: Fundamentals and applications. 2nd edition. New York: Marcel Dekker, 1987.
[18] Lee J.W., Park R.J.H., Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci, 2000, 89: 850-866.
[19] Mi F.L., Wu Y.B., Shyu S.S., Schoung J.Y., Huang Y.B., Tsai Y.H., Hao J.Y., Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivey. J. Biomed. Mater. Res., 2002, 59: 438- 439.
[20] Defail A.J., Edington H.D., Matthews S., Lee W.C., Marra K.G., Controlled release of bioactive doxorubicin from microspheres embedded within gelatin scaffolds. J. Biomed. Mater. Res. 2006, 79: 954- 962.
[21] Luo Y., Kirke K.R., Cross-linked hyaluronic acid hydrogel films: New biomaterials for drugs delivery. J. Control Release, 2000 69: 169-184.
[22] Cho Y.S, Lee J.W., Lee J.S., Lee J.H., Yoon T.R., Kuroyanagi Y., Park M.H., Pyun D.G, Kim H.J., Hyaluronic acid and silver sulfadiazineimpregnated polyurethane foams for wound dressing application. J. Mater. Sci. Mater. Med., 2002, 13: 861-865.
[23] Katti D.S., Robinson K.W., Ko F.K, Laurencin C.T., Bioresobable nanofiber- based systems for wound healing and drug delivery: Optimisation of fabrication parameter. J. Biomed. Mater. Res. B. Appl. Biomater, 2004, 70: 286-296.
[24] Kietzmann M., Braun M. Effects of the zinc oxide and cod liver oil containing ointment zinc jecol in an animal model of wound healing. Dtsch Tierarztl Wochenschr, 2006, 113: 331- 334.
[25] Wu X.S., Synthesis and Properties of biodegradable lactic glycolic acid polymer. In: Wise et al., editors. Encyclopaedic Hanbook of Biomaterials and Bioengineering. New Yok. Marcel Dekker, 1995 p.1015-54.
[26] Jalil R., Nixon J.R., Biodegradable poly (latic acid) and poly (lactide-coglycolide) microcapsules: problems associated with preparative techniques and release properties. J. Microencapsulation 1990; 7: 297- 325.
[27] Rajeev A., The manufacturing techniques of various drug loaded biodegradable poly(lactide- co- glycolide9 (PGLA) devices. Biomaterials 2000; 21: 2475-2490.
[28] Warmer W.G., Yin J.J., Wei R.R., Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free radical. Biol. Med. 23. 1997 p 851-858.
[29] Herrling T., Jing K., Fuchs J., Measurements of UV- generated free radicals/ reactive oxygen species (ROS) in skin.Spectrochim Acta A Mol Biomol Spectrosc. A63 (2006) 840-845.
[30] Jianhong W.U. et al. The toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after the sub chronic dermal exposure. 2009.Toxicol Lett Dec 1;191(1):1-8. doi: 10.1016/j.toxlet.2009.05.020. Epub 2009 Jun 6.
[31] Muzzarelli R.R.A, C. Jeuniauk, G.W. Gooday, Chitin in Nature and Technology, Plenum, New York, 1986.
[32] Nicol S, Life after death for empty shells, New Sci. 129 (1991) 46-48.
[33] Agnihorti S.A., Aminabhavi T.M., Controlled release of clozapine through chitiosan microparticle prepared by a novel method, J. Control. Release 96 (2004) 245-259.
[34] Maitra A.,Determination of size parameters of water Aerosol OT-oil reverse micelles from their nuclear magnetic resonance data, J. Phys. Chem. 88 (1984) 5122-5125.
[35] Polk A., Amsden B., Peng T.,Goseen M.F.A., Controlled release of albumin from chitosan- alginate micro-capsules, J. Pharma. Sci. 83 (1994) 178-185.
[36] Tokumitsu H., Ichikawa H., Fokumori Y., Chitosan-gadopentenic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: preparation by novel emulsion droplet coalescence technique and characterization, Pharm. Res. 16 (1999) 1830-1835.
[37] Nishimura K, Nishmura S., Tokura S., Macrophage activation with multiporous beads prepared from partially decacetylated chitin, J. Biomed. Mater. Res. 20 (1986) 1359-1372.
[38] Akbuga J, Durmaz G, Preparation and evaluation of cross-linked chitosan microspheres containing furosemide, Int J. Pharma. 11 (1994) 217-222.
[39] He P., Davis S.S, Chitosan microspheres prepared by spray drying, Int. J. Pharm. 187 (1999) 53-65.
[40] Shikata F. Tokomitsu H. Fukumori Y., In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer, Eur. J. Pharm. Biopharm. 53 (2002) 57-63.
[41] Tokumitsu H., Hiratsuka J., Sakurai Y., Kobayashi T., Ichikawa H., Fokumori Y., Gadolinium neutron- capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor, Cancer Lett. 150 (2000) 177-182.
[42] Galownia, J.; Martin, J.; Davis, M.E. Aluminophosphate-based, microporous materials for blood clotting. Microporous Mesoporous Mater. 2006, 92, 61–63.
[43] Zhang H., Kim Y., Dutta P.K., Controlled release of paraquat from surface-modified zeolite Y. Microporous Mesoporous Mater, 2006, p.312-318.
[44] Ndiede N., Raidoo R., Schultz M.K., Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications. Larsen S. Languir, 2011, p.2904- 2909.
[45] Ceyhan T., Tatlier M., Alcakaya H.J. In vitro evaluation of the use of zeolites as biomaterials: effects on simulated body fluid and two types of cells. Mater. Sci. Mater. Med. 2007, 18, 1557-1562.
[46] Zarkovic N., Zarkovic M., et al. Anticancer and antioxidative effects of micronized zeolite clinoptilolite. Anticancer Res. 23, 2003 p.1589-1596.
[47] Ivkovic S., Deutch, M. Mannel, et al. Supplementation with theTribomechanically Activated Zeolite Clinoptilolitein Immunodeficiency: Effects on the Immune System Adv. Therapy 21, 2004, p. 135-147.
[48] Grancaric A.M., Tarbuk A., Kovacek I., Nanoparticles of activated natural zeolite on textile for protection and therapy. Chemical. Engineering Quartely, 2009, p. 203-210.