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Abstract—A systems approach model for prostate cancer in
prostate duct, as a sub-system of the organism is developed. It is
accomplished in two steps. First this research work starts with a
nonlinear system of coupled Fokker-Plank equations which models
continuous process of the system like motion of cells. Then extended
to PDEs that include discontinuous processes like cell mutations,
proliferation and deaths. The discontinuous processes is modeled
by using intensity poisson processes. The model incorporates the
features of the prostate duct. The system of PDEs spatial coordinate is
along the proximal distal axis. Its parameters depend on features of
the prostate duct. The movement of cells is biased towards distal
region and mutations of prostate cancer cells is localized in the
proximal region. Numerical solutions of the full system of equations
are provided, and are exhibit traveling wave fronts phenomena.
This motivates the use of the standard transformation to derive a
canonically related system of ODEs for traveling wave solutions. The
results obtained show persistence of prostate cancer by showing that
the non-negative cone for the traveling wave system is time invariant.
The traveling waves have a unique global attractor is proved also.
Biologically, the global attractor verifies that evolution of prostate
cancer stem cells exhibit the avascular tumor growth. These numerical
solutions show that altering prostate stem cell movement or mutation
of prostate cancer cells lead to avascular tumor. Conclusion with
comments on clinical implications of the model is discussed.

Keywords—Fokker-Plank equations, global attractor, stem cell.

I. INTRODUCTION

Prostate cancer is an evolutionary process involving natural
selection among prostate cancer stem cells [19]. The selection
of prostate cancer is driven typically by differential replication
of cells that differ phenologically as a result of genetic muta-
tions of prostate stem cell. The organism responses represents
the immune system attack on cells recognized as foreign which
has really been demonstrated as crucial to early stages of
natural prostate cancer suppression [22], [11]. Predation of
the immune system selects variants that are less immunogenic
[12]. A sub population of prostate cancer stem cells might
escape by evading the immune system [23].

There are three main phases of solid tumor cancer: avas-
cular,vascular and metastatic [17], [33]. The prostate gland
contains a branched network of ducts which directs seminal
fluid toward the urethra [46]. The lumen of the ducts is lined by
the prostate epithelium, which is composed of two cell layers
Figure 1. b : an underlying basal layer that is discontinuous
comprising stem cells and intermediate transit amplifying
cells(TA/IC) and an overlying luminal layer containing luminal
cells responsible for producing seminal fluid and secreting it
into the lumen [49]. The longitudinal axis of a prostate duct
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Fig. 1. b :Illustration of a healthy the basal and luminal layers of the prostate
epithelium.

is divided into three regions which are classified according to
their distance from the urethra: The proximal, intermediate,
and distal regions [28], [35], [38]. The proximal region of the
prostatic ducts harbor the prostatic epithelial stem cells [49].
It would seem that stem cells in the basal layer in proximal
region give rise to progeny consisting of TA/IC cells, which
in turn differentiate into the functional, secretory luminal cells
[30], [7], [47]. Homeostasis of the prostate epithelium is
maintained by prostatic adult stem cells, which are localized
in the proximal region and proliferate to give rise to the
cells that populate the epithelium . The proliferation rate of
epithelial cells is balanced by an equal rate of cell death, so
that no net change in total epithelial cell number occurs. To
achieve this balance, the stem cell proliferation rate must be
tightly controlled. At least part of this control is achieved
through transforming growth factor-β (TGF-β), which is an
extracellular factor secreted by prostate epithelial cells and by
the stromal cells which support the prostate epithelium. TGF-
β inhibits cellular proliferation when administered to prostate
epithelial cells.

Most evidence suggest the relevance of a preliminary model
that focuses on mutant basal stem cells as the primary source
of cancer cell lines. Prostate cancer basal stem cells move
to intermediate or distal to proliferate. Specifically, a model
whereby mutant stem cells lead to mutant progeny, and conse-
quently to the burgeoning of (heterogeneous) tumor growth is
developed. In the model, prostatic stem cells, cancer prostatic
stem cells and progeny prostatic cancer stem cells were
explicitly represented in a one-dimensional reconstruction of
a prostate duct along proximal-distal axis. Following standard
methodology, the purpose of the model in this work is toward
identifying the dynamics of some of the key elements operative
in the progression of the avascular stage of prostate tumor
development. The model does not distinguish types of mutant
progeny cells, but look to overall net progeny P̃ of net mutant
stem cells S̃, and net densities of healthy prostatic stem cells
S. ”Defective cells would mark the transition between pre-
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tumor to tumor progression” [9]. The mutant progeny term P̃
is therefore the amalgamation of all types of tumorous cells,
excluding the mutant basal stem cell population S̃. There is
evidence that prostate stem cell movement can dysregulate
epithelial homeostasis and lead to excessive cell growth,
suggesting that disruption of cell movement may contribute
to prostate cancer [27]. There is evidence that there is two
possible ways of causes of prostate cancer: (i) Mutant stem
cells and (ii) Altering prostate stem cells movement. The
mutant stem cell approach has advantages over the second
approach for the following reasons: (i) This research focus
in results that are easily clinically verifiable. Thus the first
approach is favored. The second approach has no vivo experi-
ments to compute the parameters for modeling but some vitro
experiment have done to support the hypothesis [27] . The net
population P̃ would correspond with overall tumor density
- a quantity that is relatively accessible; (ii) The results in
this work suggest that the present model provides clinically
plausible population profiles; and (iii) The basic structure of
the model can naturally accommodate additional elements, cell
types, etc., as needed. In future work, therefore, the plan is
to include heterogeneity of cells, additional biochemical and
cellular network interactions, as well as treatment terms.

In the literature, there already are ODE (ordinary differential
equations) models that include stem cell population densi-
ties, for example [14], [10]. The Ganguly et al. [14] model
quantifies generations of progeny of a single cell line, rather
than heterogeneous cell lines as such. The model includes
self-renewal rates of the cell population compartments, cor-
responding to clinical evidence that in some cases, daughter
cells can belong to the compartment of origin. In fact daughter
cells can also belong to earlier compartments in a cell line
[29]. Clinical techniques presently available, however, do not
allow for easy identification in vivo of the generation to which
a cell belongs (relative to a source). Consequently, the self-
renewal rates in the model of [14] are not at this time directly
clinically verifiable. In order to meet requirement (i) above it
is important to ignore internal fluctuations in cell lines, and
look instead to net population quantities.

In [10], [14], [32], [45], [48], one finds quantitative results
based on numerical simulations. These numerical results invite
further theoretic development. As this work show, precise
stability analysis can provide boundary conditions which could
have clinical implications.

Another feature of the models of [10], [14] and others is
that cancer cell populations are modeled in isolation, that is,
as independent growth processes. If one tracks the population
growths through the models in [10] and [14], one obtains ex-
ponential growth of initial population densities. This, however,
is not realistic in vivo, except perhaps for the most initial
time period of positive net mutation, or for cancer growth in
vitro. Cancer as such, occurs in vivo and afflicts an organism.
An organism typically responds to mutation by employing
various corrective measures. Even in a healthy organism,
mutations occur on a regular basis, but unhealthy cells are
destroyed or flushed from the system. An organism becomes
diseased when mutation types and rates exceed the response
capacity of the organism [2]. In [44]looked at mutant stem

cell approach. They used a PDE with one dimensional spatial
coordinates to model. In their model the spatial coordinates
did not fully address the prostate duct features. For example
that the stem cells are primarily located in the proximal
region. All parameters used in their model were constant and
they did not incorporate features of the prostate duct. The
specifics of organism response can of course be extremely
complex, involving an orchestrated panoply of system-wide
biochemical and cellular processes. For now, the plausibility
of the approach in this work is investigated, by looking to
the overall effect of a generic response term. Analysis of
specific corrective processes (T - cells, etc) to future work
is deferred. As is well known, cells have contact dynamics
[”contact inhibition (and lack) of migration” [1]].

They therefore also include diffusion terms to model spatial
extension of tumor growth. This work model consists of a
system of coupled PDEs (partial differential equations) to
model the spatial spread of tumor growth resulting from
contact dynamics, spatial diffusion and biased cell motion
toward the distal region. In this work, it is assumed that stem
cells reside in proximal region and are assumed stationary [27].
The advection term is included since the prostate cancer cells
to proliferate have to move to distal region [27]

As described above, their model focuses on a mutant stem
cell population that leads to mutant progeny, and consequently
to the burgeoning of (heterogeneous) tumor growth [30],
[47], [7], [40]. Therefore three cell populations are obtained,
namely, healthy stem cells, mutant stem cells and progeny of
mutant stem cells. The PDE involving stem cells evolution
does not have the diffusion term since prostate stem cells
are stationary in the proximal region. Quinn and Sinkala [44]
introduction of second order partial derivatives was partly
motivated by the work of [4] on two interacting populations
that disperse to avoid crowding. The model in this work,
though, includes three populations. One also draw from the
work of [1] on contact inhibition (and lack) of migration
and biased cell motion toward distal region. Putting these
results together produces a model that includes a system of
coupled Fooker-Planck equations. Then the poisson process
terms included to a system of Fokker-Planck equation type.
The mathematical analysis is partly motivated by the work
of [42] on avascular tumor growth. In [42], the three cell
populations modeled are proliferating, quiescent and necrotic
cells. The model in this work is for stem cells, mutant stem
cells, and progeny of mutant stem cells. A key features of our
model is inclusion of features of prostate duct in the terms
of the PDEs, biased motion of cells, parameters depends on
spatisal proximal-distal coordinate and prostate stem cells are
stationary. It is not intended that the source is independent as
such. Within the whole organism one of the basic tenets of
the system approach is that the production of all cell types
(in particular basal stem cells, mutant stem cells and progeny)
depends on the whole organism. It follows that within the
prostate, organism response terms can be included as non-
constant functions of several variables, defined by locally
interacting quantities and by the whole organism response.

There are new clinical results that seem to support the need
for the development of models that include organism response
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terms and parameters depending on proximal-distal coordinate.
Indeed, there has been a promising build up of results toward
the possibility of treating certain cancers by using non-toxic
drugs that activate and/or assist the immune system response
through specific molecular markers. With regard to prostate
cancer, see [18], [6], [37], [21], [25], [50]. For prostate cancer
James P. Allison and his team - see [39] found evidence that
immune system can recognize prostate cancer stem cells. The
response of the immune system was feeble [31]. See also
[12]. The literature is, in fact, rich in cancer research that
investigates the role of the immune system. As pointed out
in [?], it is increasingly feasible that this accumulation of
results involving organism response means that in the future,
ranges of clinically useful models will significantly benefit
from the inclusion of organism and/or immune response terms
and features of prostate duct. In particular, a clinically useful
expansion of test model in this work might therefore include
reaction pathway structures in the human organism.

More work would be needed to make their test model
directly clinically applicable. At this time, however, the nec-
essary laboratory quantities and parameters are not yet avail-
able. However, there would seem to be grounds for further
development of models that include organism response terms
and biased motion terms. In model in this work, inclusion of
an organism response term suppresses tumor growth, while
exclusion of the response term leads to eradication of basal
cell populations. This article is demonstrated both theoretically
and computationally. Indeed, inclusion of the response term in
our model is what leads to the existence of a global attractor
with strictly positive cell densities. In other words, our results
are also consistent with clinical results corresponding to the
relatively stable avascular stage of tumor growth. Note too
that our results are consistent with the recently published
laboratory results of Allison et al, referenced above. In other
words, it is now known that organism response can play an
effective role in limiting cancer growth.

For the model in this work one include alteration of stem
cells or mutant stem cells with organism response. The PDE
will have diffusion terms and advection terms.

The paper is structured as follows: Following Section 1
Introduction. Section 2 Construction of the model; Section 3
Rescaling the system of PDEs; Section 4 Analytic approxima-
tion; Section 5 Persistence. We use technique similar to Quinn
and Sinkala [44] Section 6 Stability analysis for persistence;
Section 7 Clinical implications; Section 8 Conclusion.

II. BUILDING OF THE MODEL

For the model in this work, one let the populations defined
by

S = basal stem cells (1)
S̃ = mutant basal stem cells (2)

P̃ = progeny of mutant basal stem cells (3)

One assume that the total basal cell population B(t) =
S(t) + S̃(t) is constant. Consequently, B = B(0) is the
carrying capacity for the total number of all basal stem cells,

both healthy and mutant. μi(x), i = 0, 1 represent mutation
terms see the flow chart given in Figure 6. where

μi(x) =

{
μi if 0 ≤ x ≤ length of duct/3
0 otherwise (4)

and

α1(x) =

{
α1 if 0 ≤ x ≤ length of duct/3
0 otherwise (5)

These parameters depends on spatial coordinate along proxi-
mal -distal axis. The response term parameter is represented
by R0 are assumed to be scalar functions depending on net
mutations.

Note the flow chart given in Figure 6, for stem cells, mutant
stem cells and progeny of mutant stem cells in prostate duct.
This structure implies the following: (i) Since for this system
there is no population in the model that is prior to healthy
basal stem cells, there is consequently no IN term coefficient
μ−1 ; (ii) The constant μ0(x) stands for the mutation rate of
healthy stem cells into mutant stem cells; (iii) The constant
μ1(x) stands for the production rate of mutant stem cells into
progeny of mutant stem cells; and (iv) The constant μ2 stands
for the natural death rate of mutant progeny. For the avascular
stage of tumor growth, we assume that μ2 = 0.

In the next section, one indicate provisional values for
constants corresponding to each of the cell types. Note that
we were not able to find an abundance of clinical data in the
literature. See however Table 1 and [10], [14], [36], [48].

It is known that stem cell populations are maintained
over the lifetime of the organism. ”(It) is generally accepted
that cancer development occupies a significant time-span in
humans. In many tissues, the restricted progenitors and dif-
ferentiated cells tend to have a (relatively) short life-span”
[7]. This is ”(in) contrast to the stem cells, which persist
throughout life in (these) tissues” [7]. Since the architecture of
the prostate [7] is maintained throughout the avascular stage
of prostate cancer, one make the approximating assumption
that the total number of basal stem cells (healthy plus mutant)
remains constant and basal stem cells are located in the prox-
imal region of the prostate duct. One also assume that basal
stem cells are stationary in the the proximal region. In other
words, while mutations of healthy stem cells slowly reduce the
concentrations of healthy stem cells S, and such mutations
then contribute to the mutant stem cell concentrations S̃.
The maintenance of the prostate architecture leads us to the
approximation B = S + S̃ for some constant B.

Again, since the architecture of the gland is maintained, one
assume that the net primary growth rate of healthy basal stem
cells is zero. This implies that α0 = 0.

As described in the Introduction, one of the basic tenets
of the system and sub-system approach is that the production
of all cell types (in particular basal stem cells, mutant stem
cells and progeny) depends on the complex, flexible, but
directed functioning of the whole organism. It follows that
locally (within the prostate) organism response terms can
be included as non-constant functions of several variables,
driven both by locally interacting quantities and by the whole
organism response. As basal stem cells mutate, the prostate
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loses its natural source of healthy stem cells. For the organism
response, one assume that the response rate is proportional to
both the mutation rate μ0(x) and S̃

B (the relative build up of
mutant stem cells S̃ compared to the carrying capacity B of
all stem cells). One therefore take the organism response term
to be R0 = ρμ0

B S̃, for some ρ ∈ [0, 1].
Since, the mutant basal stem cell population is of low

density (Collins et al., 2006), as an approximation one assumes
that the organism response to this low density flux in stem cell
character is negligible. One therefore take R1 = 0.

Compared to healthy cells, mutant stem cells and their
progeny significantly differ in their growth rate signatures.
For the growth rate of the avascular tumor (progeny of mutant
basal stem cells , one take α2 = 0.09. See Table I and [48]. For
the net growth rate of mutant basal stem cell concentrations,
one uses α1 = 0.01 in Equation (5). See Table I and [10].
Despite relative low density of mutant stem cells, being mutant
means that growth rates may depend somewhat on interaction
with other mutant stem cells. One uses α11 = 0.01. See Table
I and [10]. For interaction of progeny with progeny one takes
α22 = .01. See Table I and [48]. Lacking further clinical data
at this time, one assumes that the interaction between progeny
of mutant stem cells may require α21 > 0.

For the avascular phase, there is a build up of tumor growth
that is of relatively modest dimensions within the epithelial
tissue [7]. Moreover, at this stage, cancerous growth would
seem to make effective use of available resources, without
effective direct response from the organism. [See, however,
[39], results of which will need to be eventually included in a
more complete model.] As a first approximation one therefore
assumes that the organism response to the progeny is given
by R2 = 0.

Cell densities are functions of both location x and time t .
One write S (x, t); S̃ (x, t); and P̃ (x, t). The spatial variable
x is taken to be one-dimensional and is along proximal-distal
axis. The variable x therefore corresponds to an average radial
growth distance of the tumor away from the initial center.
One hypothesizes that this idealization is reasonable as an
approximation, since in the avascular phase early formation
of tumors is confined to epithelium cells.

One build the model similar approach taken by Quinn
and Sinkala [44] but in this work case one do include the
features of the prostate duct. One obtain the a system of
PDEs for S (x, t), S̃ (x, t) and P̃ (x, t). One also assume that
cell movement is biased and directed from proximal to distal
region and stem cells are stationary. The unbiased movement
is modeled by Fokker-Planck diffusion. One therefore obtain

∂S

∂t
= −μ0(x)S +

ρμ0(x)

B
S̃ (6)

∂S̃
∂t = ∂

∂x

(
S̃

S̃+P̃

∂(S̃+P̃ )
∂x

)
+α1(x)S̃ − v0

∂S̃
∂x − 1

Bα11S̃
2 − μ1(x)S̃ + μ0S

(7)

∂P̃

∂t
=

∂

∂x

(
P̃

S̃ + P̃

∂(S̃ + P̃ )

∂x

)
+α2P̃ − 1

B
α22P̃

2+μ1(x)S̃

(8)
where v0 is the velocity of prostate cancer stem cells is

approximately 3μ meters per hour.

III. RE-SCALING THE SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS

For convenience, one rescales the system of partial differen-
tial equations (6)-(8) [43]. We substitute; t̄ = tα2, divide the
first and second equations by α2(is assumed constant), and
then set x̄ = x

√
α2. This yields

∂S

∂t̄
= −μ0(x)

α2
S +

ρμ0(x)

Bα2
S̃ (9)

∂S̃
∂t̄ = ∂

∂x̄

(
S̃

S̃+P̃

∂(S̃+P̃ )
∂x̄

)
− v0

α2

∂S̃
∂x̄ + (α1

α2
− μ1

α2
)S̃ − 1

Bα2
α11S̃

2 + μ0(x)
α2

S

(10)

∂P̃

∂t̄
=

∂

∂x̄

(
P̃

S̃ + P̃

∂(S̃ + P̃ )

∂x̄

)
+ P̃ − 1

Bα2
α22P̃

2+
μ1(x)

α2
S̃

(11)
Numerical simulations of the full system of PDEs (9-11) are

given in figures 3,4 and 5. For each cell density S, S̃, and P̃
one sees that time evolution produces an advancing pulse, or
wave front. This motivates the strategy of Section 4. (Note
that clinically verified parameters can be difficult to find. One
used the values listed in Table 1, obtained from the literature
search in [44].)

IV. ANALYTIC APPROXIMATION

The goal in this section is to obtain solutions that ap-
proximate the wave-front behavior exhibited in the numerical
solutions in Figures 3, 4 and 5. One therefore uses a well
known canonical transformation of coordinates for obtaining
possible solutions of the traveling wave form

S(x̄, t̄) = s(z), S̃(x̄, t̄) = s̃(z), P̃ (x̄, t̄) = p̃(z), z = x̄− vt̄,
(12)

where v is the wave speed.
Substitution of these solution forms transforms the PDEs

(9-11) into the ODEs

vs′ − μ0

α2
s+ ρμ0

Bα2
s̃ = 0

(v + v0)s̃
′ +
(

s̃(s′+s̃′+p̃′)
s+s̃+p̃

)′

+α1

α2
s̃− 1

Bα2
α11s̃

2 − μ1

α2
s̃+ μ0

α2
s = 0

vp̃′ +
(

p̃(s′+s̃′+p̃′)
s+s̃+p̃

)′
+ p̃− 1

Bα2
α22p̃

2 + μ1

α2
s̃ = 0

(13)
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TABLE I
PARAMETERS DATA OF EQUATIONS (6-8)

ρ ∈ [0, 1] organism response rate
B = 1 carrying capacity of all stem cells,

healthy and mutant together
α1 = .01 growth rate of

mutant basal stem cells [10]
α11 = .01 logistic constant

for mutant stem cells (MSC) [48]
10−7 ≤ μ0 ≤ 10−2 rate constant for healthy stem

cells to mutant stem [14],
μ1 = .00995 differentiation rate constant for the MSC to

progeny number [36]
α2 = .09 growth rate of progeny of MSC [48]
α22 = .01 logistic constant

for progeny of mutant stem cells [48]

A. Approximating the Minimum Speed.

In the model in this work, cell growth is centered about
(s = 0, s̃ = 0, p = 0) . The pair s = 0, s̃ = 0 determines the
center for a Taylor expansion. The allowed values for s and
s̃ are then non-negative with s+ s̃ = B > 0. [This technique
allows for analysis of population dynamics near a steady state.
See also [43], [15]. By the classical theory of ODE’s one
therefore looks for solutions of the form

s(z) = ŝ exp(−ξz), s̃(z) = ̂̃s exp(−ξz), p̃(z) = ̂̃p exp(−ξz).
Since cancer does not usually behave periodically, one also
requires that ξ be real(Imaginary part ξ = 0). Substituting
into (13) and taking only leading order terms gives

−vξŝ+ ξ2ŝ− μ0

α2
ŝ+

ρμ0

Bα2

̂̃s = 0 (14)

−(v0 + v)ξ̂̃s+ ξ2̂̃s+ α1

α2

̂̃s− μ1

α2

̂̃s+ μ0

α2
ŝ = 0 (15)

−vξ̂̃p+ ξ2̂̃p+ ̂̃p+ μ1

α2

̂̃s = 0 (16)

Thus for nontrivial solutions, we must have

ξ(x) =
1

2

⎡⎣v ±
√√√√v2 − 4

(
1 +

μ1(x)

α2

̂̃ŝ̃p
)⎤⎦ (17)

The existence of a minimum wave speed is similar to the
result for the reaction-diffusion equation studied by Fisher
(1937). It is known that a wave moving with minimum
speed evolves from sufficiently localized data. One therefore
anticipates that the speed of the tumor growth implied by
equations (9 - 11) will be bounded below by 2. One notes
that while clinical verification remains to be obtained, this is
confirmed in numerical simulations.

B. Rescaling the traveling wave equation.

To obtain a stability analysis of (13), one modifies a method
developed by Canosa [5] for approximation of the Fisher
equation. This involves rescaling the traveling wave coordinate
by writing ζ = −z/v and leads to the equivalent system

Fig. 2. Numerical solutions of the model (6-8). In this figure we repre-
sent a window of three different dynamics of stem cell densities (denoted
by S) at three different organism responses, namely, organism response,
ρ = 0, 0.5, and 1. These densities are plotted as functions of time at x = 0.
The initial conditions were S̃ = 0, P̃ = 0, S = exp(−0.1x). The figure
demonstrates that the increased stem cell density as a function of organism
response just like observed in [44].

Fig. 3. Numerical solutions of the model (6-8). In this graph the symbol
S represents stem cell densities. These are plotted as functions of space
at times t = 125, 250, 375, 500, 2000. The initial conditions were S̃ =
0, P̃ = 0, S = exp(−0.1x), organism response, ρ = 0.5 and the boundary
conditions used were ∂S

∂x
= ∂S̃

∂x
= ∂P̃

∂x
= 0. x coordinate is along proximal-

distal axis with scale unit x-coordinate represents 1
80

of the prostate duct.

− ds
dζ − μ0

α2
s+ ρμ0

Bα2
s̃ = 0

−(1 + v0
v ) ds̃dζ + 1

v2
d
dζ

(
s̃

s+s̃+p̃

d(s+s̃+p̃)
dζ

)
+α1

α2
s̃− 1

Bα2
α11s̃

2 − μ1

α2
s̃+ μ0

α2
s = 0

−dp̃
dζ + 1

v2
d
dζ

(
p̃

s+s̃+p̃

d(s+s̃+p̃)
dζ

)
+ p̃− 1

Bα2
α22p̃

2 + μ1

α2
s̃ = 0

(18)
Under present biological hypothesis and as in Sheratt and

Chaplain [43], one obtains the reduced equation
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Fig. 4. Numerical solutions of the model (6-8). In this graph the symbol S̃
represents cancer stem cell densities. These are plotted as function of space
at times t = 125, 250, 375, 500, 3000. The initial conditions were S̃ =
0, P̃ = 0, S = exp(−0.1x), organism response, ρ = 0.5, and the boundary
conditions used were ∂S

∂x
= ∂S̃

∂x
= ∂P̃

∂x
= 0. x coordinate is along proximal-

distal axis with scale unit x-coordinate represents 1
80

of the prostate duct.

Fig. 5. Numerical solutions of the model (6-8). In this graph the symbol
P̃ represents cancerous progeny cell densities. These are plotted as functions
of space at times t = 125, 250, 375, 500, 2000. The initial conditions were
S̃ = 0, P̃ = 0, S = exp(−0.1x), organism response, ρ = 0.5 and the
boundary conditions used were ∂S

∂x
= ∂S̃

∂x
= ∂P̃

∂x
= 0. x coordinate is along

proximal-distal axis with scale unit x-coordinate represents 1
80

of the prostate
duct.

− ds
dζ − μ0

α2
s+ ρμ0

Bα2
s̃ = 0

−(1 + v0
v ) ds̃dζ + α1

α2
s̃− 1

Bα2
α11s̃

2 − μ1

α2
s̃+ μ0

α2
s = 0

−dp̃
dζ + p̃− 1

Bα2
α22p̃

2 + μ1

α2
s̃ = 0

(19)

Let
u =

1

1 + v0
v

, v > 0.

V. PERSISTENCE

In order for a model to be biologically feasible, it is
normally required that ”persistence” be established. See,
e.g., [34], [16], and [20]. For our model this means
that we need to prove that the non-negative cone C =
{(s, s̃, p̃) | s ≥ 0, s ≥ 0, p̃ ≥ 0} is invariant with respect to
scaled time ζ. Recall that in geometric terms, the trajectories
of an ODE (

ds

dζ
,
ds̃

dζ
,
dp̃

dζ

)
= v (s, s̃, p̃)

are the integral curves of the defining vector field

v (s, s̃, p̃) = (v1,v2,v3)

where
v1 = −μ0

α2
s+

ρμ0

Bα2
s̃,

v2 = u

(
μ0

α2
s+ (

α1

α2
− μ1

α2
)s̃− α11

Bα2
s̃2
)
,

v3 =
μ1

α2
s̃+ p̃− α22

Bα2
p̃2.

One therefore examines the behavior of this vector field along
the boundaries of the non-negative cone C.

For convenience, one makes the following identifications:

a =
μ0

α2
, b =

ρμ0

Bα2
, c =

α1

α2
, d =

α11

Bα2
, e =

μ1

α2
, f =

α22

Bα2
.

The vector field becomes

v (s, s̃, p̃) =
(−as+ bs̃, u(as+ (c− e)s̃− ds̃2), es̃+ p̃− fp̃2

)
.

The boundary of the non-negative cone is determined by
the coordinate planes: I denotes the (p̃ = 0)/(s, s̃) plane;
II denotes the (s = 0)/(s̃, p̃) plane; and III denotes the (s̃
= 0)/(s, p̃) coordinate plane. All three planes intersect in the
origin; each pair of planes intersect in one of the non-negative
coordinate lines; and each plane has its own relative interior.
One analyzes each of these sets in turn. Note that ∩ denotes
set-theoretic intersection.

I ∩ II ∩ III: The origin is clearly an equilibrium point for
the vector field.

I∩III: Along the strictly positive s > 0 - axis, v (s, s̃, p̃) =
(−as, uas, 0). This generator points along the coordinate
plane II .

I ∩ II: Along the strictly positive s̃ > 0 - axis,

v (s, s̃, p̃) =
(
bs̃, u

(
(c− e)s̃− ds̃2

)
, es̃
)
.

It follows that along the s̃ > 0 - axis, the vector field points
toward the interior of the cone.

Regarding the second coordinate of the vector field, note
that

c− e =
α1 − μ1

α2
. (20)
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�
�

S � S̃ P̃�

α1

μ0 μ1

Fig. 6. A schematic diagram of S̃ compartment. μ0, α1, μ1 depend on
spatial coordinate x along proximal-distal axis of the prostate duct.

Figure 6 shows three rate constants that govern the population
of the S̃ compartment, namely, α1, μ0, μ1. If the disease is
progressive, s̃ is assumed to be increasing, and so one takes
α1 + μ0 > μ1. But, μ0 corresponds to a relatively rare event
[32], hence α1 is the dominant term of the left-hand side of
this inequality. For our model, we therefore assume that α1 >
μ1, from which it follows that c − e > 0. Note that this is
consistent with clinical data recorded in Table I.

It follows that the second coordinate has a zero along this
axis. At that point, the vector field is parallel to the s - plane,
but still points to the interior of the non-negative cone C.
II ∩ III: Along the strictly positive p̃ > 0 axis, the vector

field is v (s, s̃, p̃) =
(
0, 0, p̃− fp̃2

)
. Initial values near the

origin flow the along p̃ axis toward fixed point (0, 0, 1/f).
Beyond the fixed point, the flow reverses and is directed back
toward the fixed point.

Next, one looks to the interiors of the three coordinate
planes. For simplicity of notation, one uses I, II, III to
indicate each case, where it is understood that one is looking
to interior points of each plane (relative topology).

I : (p̃ = 0)/(s > 0, s̃ > 0)

Along this plane, v (s, s̃, p̃) =(−as+ bs̃, u(as+ (c− e)s̃− ds̃2), es̃
)
. Since the third

coordinate is positive, the vector points to the interior of the
non-negative cone C.

II : (s = 0)/(s̃ > 0, p̃ > 0)

Along this plane v (s, s̃, p̃) =(
bs̃, (c− e)s̃− ds̃2, es̃+ p̃− fp̃2

)
. Since the first coordinate

is positive, the vector points to the interior of the non-negative
cone C.

III : (s̃ = 0)/(s > 0, p̃ > 0)

Along this plane v (s, s̃, p̃) =
(−as, uas, p̃− fp̃2

)
. Since

the second coordinate is positive, the vector points to the
interior of the non-negative cone C.

Putting these results together, and invoking the existence
and uniqueness theorem for ODE’s, it follows that the non-
negative cone C is invariant.

VI. CLINICAL IMPLICATIONS

It would seem that certain clinical implications are emergent
from the model.

Fig. 7. Graph of δ1(ρ), 0 ≤ ρ ≤ 1, where δ1 is the first coordinate of the
attractor A in terms of scaled normal and mutant stem cell populations.

Fig. 8. Graph of δ2(ρ), 0 ≤ ρ ≤ 1, where δ2 is the second coordinate of
the attractor A in terms of scaled normal and mutant stem cell populations.

(a)When ρ = 0, there is no organism response, and the
healthy stem cell population would be annihilated.

(b)As ρ increases toward ρ = 1, δ1 (for healthy stem cells)
increases at a constant rate toward its maximum

δ1 =
b(c− e+ b)

da
.

(c)As ρ increases toward ρ = 1, δ2 (for mutant stem cells)
increases at a constant rate toward its maximum

δ2 = u
c− e+ b

d
.

Note that the equilibrium value δ2 for the mutant stem cell
population also increases with the organism response. This is
consistent with the results in [26] , on cancer being a robust
system.

One illustrates (a), (b) and (c) using data from Ta-
ble I. One therefore obtains a parametric curve A(δ) =
(δ1(ρ), δ2(ρ)) , 0 ≤ ρ ≤ 1.

(d)As ρ increases toward ρ = 1, δ3 (mutant progenitor cells)
increases toward its maximum

δ3 =
d+

√
d2 + 4dfce− 4dfe2 + 4def μ0

Bα2

2df
.

Observe that ∂2δ3
∂ρ2 < 0.

(e)It follows that if a therapy is used that enhances the
organism response term, then we would expect not only a
slower progression, but a smaller equilibrium tumor mass for
the avascular stage.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:4, No:5, 2010 

603International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:4
, N

o:
5,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
12

.p
df



(f) On the other hand, a therapy that reduces or even
eliminates the organism response could be expected to reduce
the equilibrium value δ1 below a threshold and would effec-
tively lead to annihilation of the healthy stem cell population.

Mathematical justification is obtained from the following
elementary calculations.
(i) For ρ = 0, the global attractor is

(δ1, δ2, δ3) =

(
0, u

(
c− e

d

)
,
d+

√
d2 + 4dfce− 4dfe2

2df

)
.

(ii) For ρ = 1, the global attractor is

(δ1, δ2, δ3) =(
b(c−e+b)

da , u
(
c−e+b

d

)
,
d+

√
d2+4dfce−4dfe2+4defb

2df

)
.

Next, one looks to how the global attractor changes as a
function of the response term ρ. Recall that b = ρμ0

Bα2
is

the only parameter that depends on ρ. So, for the general
case (ρ ≥ 0), one gets ∂δi

∂ρ = ∂δi
∂b

db
dρ = ∂δi

∂ρ

(
b
ρ

)
, for

i = 1, 2, 3.
One therefore gets the following inequalities:

(iii)

∂δ1
∂ρ

=

(
c− e+ 2b

da

)(
μ0

Bα2

)
> 0,

∂δ2
∂ρ

= u

(
c− e

d

)(
μ0

Bα2

)
> 0,

∂δ3
∂ρ

=

(
be√

d2 + 4dfce− 4dfe2 + 4dfbe

)(
μ0

Bα2

)
> 0

VII. STABILITY ANALYSIS FOR PERSISTENCE

The first stage of the analysis is to identify and classify the
equilibrium points of the ODE. Recall that

α1 − μ1 > 0 and so − c+ e− b < 0.

One will also continue to make regular use of the identifica-
tions given in Section V:

a =
μ0

α2
, b =

ρμ0

Bα2
, c =

α1

α2
, d =

α11

Bα2
, e =

μ1

α2
, f =

α22

Bα2
(21)

The Jacobian matrix for the system (or as it is often called in
biological modeling, the variational matrix) is

V(s, s̃, p̃) =⎛⎜⎜⎝
−μ0

α2

ρμ0

Bα2
0

uμ0

α2
u
(

α1

α2
− 2α11s̃

Bα − μ1

α2

)
0

0 μ1

α2
1− 2α22p̃

Bα2

⎞⎟⎟⎠ (22)

=

⎛⎝ −a b 0
ua u(c− 2ds̃− e) 0
0 e 1− 2fp̃

⎞⎠ (23)

Equilibrium 1: The equilibrium is (0, 0, 0). Here, the
variational matrix is

V(0, 0, 0) =

⎛⎜⎝ −μ0

α2

ρμ0

Bα2
0

uμ0

α2
u
(

α1

α2
− μ1

α2

)
0

0 μ1

α2
1

⎞⎟⎠ (24)

⎛⎝ −a b 0
ua u(c− e) 0
0 e 1

⎞⎠ (25)

There are two positive eigenvalues

1 and

uc−e−a+
√
u2c2−2ceu2+2auc+u2e2−2aeu+a2+4aub

2 ,
(26)

and one negative eigenvalue

uc−e−a−√
u2c2−2ceu2+2auc+u2e2−2aeu+a2+4aub

2
(27)

To see that the signs of the eigenvalues are as claimed,
observe that the discriminant c2−2ceu+2acu+e2u2−2aeu+
a2+4abu can be written as (cu− eu+ a)

2
+4a (cu− a+ bu).

The result follows.

Equilibrium 2: The next equilibrium we treat is (0, 0, 1/f).
The variational matrix at this point is

V(0, 0, 1/f) =

⎛⎜⎝ −μ0

α2

ρμ0

Bα2
0

uμ0

α2
u
(

α1

α2
− μ1

α2

)
0

0 μ1

α2
−1

⎞⎟⎠ (28)

=

⎛⎝ −a b 0
ua u(c− e) 0
0 c −1

⎞⎠ (29)

There are two negative eigenvalues

−1 and
uc−ue−a−√

uc2−2uce+2auc+u2e2−2aeu+a2+4aub
2 ,

(30)

and one positive eigenvalue

uc− ue− a+
√
uc2 − 2cue+ 2auc+ u2e2 − 2aeu+ a2 + 4abu

2
.

The reasons for the algebraic signs are the same as for the
previous argument. It follows that (0, 0, 1/f) is a saddle point.

Equilibrium 3: The next equilibrium point that we treat is

(
b(c− e+ b)

da
, u
c− e+ b

d
,
d−

√
d2 + 4dfce− 4dfe2 + 4dfbe

2df

)
(31)
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The first two coordinates are positive. However, the third
coordinate is strictly negative. To see that we rewrite the
discriminant

d2 + 4dfce− 4dfe2 + 4dfbe = d2 + 4def (c− e+ b) .

Therefore the square root is strictly larger than d and it follows
that this equilibrium point is not in the positive cone C.

Equilibrium 4: There is only one equilibrium point that is
interior to C, namely,

(δ1, δ2, δ3) =(
b(c−e+b)

da , u
(
c−e+b

d

)
,
d+

√
d2+4dfce−4dfe2+4dfbe

2df

) (32)

The variational matrix at this point is

V(δ1, δ2, δ3) =⎛⎜⎝ −μ0

α2

ρμ0

Bα2
0

uμ0

α2
u
(

α1

α2
− 2α11δ2

Bα − μ1

α2

)
0

0 μ1

α2
1− 2α22δ3

Bα2

⎞⎟⎠ (33)

=

⎛⎝ −a b 0
ua u(c− 2dδ2 − e) 0
0 e 1− 2fδ3

⎞⎠ (34)

The eigenvalues are

1− 2fδ3 (35)

uc/2− udδ2 − ue/2− a/2+
√

u2c2−4u2cdδ2−2u2ce+2auc

2

+4d2δ22+4udδ2e−4adu2δ2+u2e2−2aeu+a2+4uab

2 ,

uc/2− udδ2 − ue/2− a/2−
√

u2c2−4u2cdδ2−2u2ce+2acu

2

+4d2uδ22+4dδ2e−4u2adδ2+e2−2aeu+a2+4aub

2 .

Note that

1− 2fδ3 = 1− 2f

(
d+

√
d2+4dfce−4dfe2+4dfbe

2df

)
= 1−

(
1 +

√
d2+4dfce−4dfe2+4dfbe

d

)
< 0.

For the other eigenvalues, observe that if one writes the
discriminant u2c2 − 4u2cdδ2 − 2u2ce + 2uac + 4u2d2δ22 +
4udδ2e− 4adδ2 + u2e2 − 2uae+ a2 + 4uab in terms of

(uc/2− udδ2 − ue/2− a/2)
2

one obtains a quantity of the form
(uc/2− udδ2 − ue/2− a/2)

2 − P , where P > 0. Note

also that c/2− dδ2 − e/2− a/2 < 0. It follows that the other
two eigenvalues are also negative. The equilibrium

(δ1, δ2, δ3) =(
b(c− e+ b)

da
, u

(
c− e+ b

d

)
,
d+

√
d2 + 4dfce− 4dfe2 + 4dfbe

2df

)
.

is therefore a local attractor.

The interior equilibrium (δ1, δ2, δ3) is a global attractor:
The unique interior equilibrium is not only a local attractor,
but is in fact a global attractor for the non-negative cone. To
establish this, one can go back to the ODE (19).

ds
dζ = −as+ bs̃

ds̃
dζ = u

(
as+ (c− e) s̃− ds̃2

)
dp̃
dζ = es̃+ p̃− fp̃2

. (36)

Notice that the first two equations are independent of the
mutant progeny term p̃. The approach in this work will
therefore be to first analyze the equations for ds

dζ and ds̃
dζ ; and

then use the derived information in the third equation for dp̃
dζ .

The first two equations are
ds
dζ = −as+ bs̃
ds̃
dζ = u

(
as+ (c− e) s̃− ds̃2

)
. (37)

The non-negative quadrant of the (s, s̃) plane is therefore
partitioned by two null-clines η1 and η2 given by s = b

a s̃ and
s = 1

a

[
ds̃2 − (c− e) s̃

]
. There are two equilibrium points, the

origin (0, 0), and (δ1, δ2) , (δ1, δ2 from
Equilibrium 4 ).

The variational matrix for the system (37) is

J =

( −a b
ua u(c− 2ds̃− e)

)
.

At the origin this becomes J =

( −a b
ua u(c− e)

)
. By

standard calculations, this matrix has two non-zero eigenvalues
of opposite sign. It follows that the origin is a saddle point.

At the point (δ1, δ2) interior to the non-negative quadrant of

the (s, s̃) plane, J =

( −a b
ua u (− (c− e)− 2b)

)
, which is

of the form J =

( −a b
a −gu

)
, where a, b, g are all strictly

positive terms. The characteristic equation is then χ (x) =
x2 + x (a+ ug) + aug − ab. The roots of this equation are

x =
− (a+ gu)±

√
(a+ gu)

2
+ 4a(gu− b)

2

both real and negative.
The nullclines η1 and η2 of (37) partition the nonnegative

quadrant of the (s, s̃) plane. We again use roman numerals I,
II, III, and IV.

Suppose that P0 is in the interior II0. The point P0 belongs
to a unique solution trajectory P (ζ) = (s (ζ) , s̃ (ζ)) of (37).
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By standard phase plane analysis (see Figure 1. a.), ds
dζ < 0

and ds̃
dζ < 0 along P (ζ). Moreover, s (ζ) and s̃ (ζ) are both

bounded below by δ1 and δ2 respectively. It follows that the
trajectory P (ζ) = (s (ζ) , s̃ (ζ)) has a limit point Ω. By the
theory of ODE’s, Ω �= (0, 0) must be an equilibrium point for
the system. But equation (37) has only two equilibrium points,
(0, 0) and (δ1, δ2). Therefore, Ω = (δ1, δ2). A completely
similar argument shows that (δ1, δ2) is the limit point for any
trajectory that begins in the interior of region IV 0.

If P0 �= (δ1, δ2) belongs to any nullcline, then by standard
phase plane analysis, the vector field is non-zero, and points
into the interior of either II or IV . The flow therefore carries
the point into the interior of II or IV respectively and we
may then argue as above.

Suppose that P0 starts in I0 or III0. The coordinate
functions are monotone. Those decreasing and bounded below
or those that increasing are bounded above. There are two
possibilities. The flow P (ζ) = (s (ζ) , s̃ (ζ)) may reach and
cross one of the null-clines in finite time. Then argue as
above. Or, P (ζ) = (s (ζ) , s̃ (ζ)) remains interior to I0 or
III0 respectively. Again, since the coordinate functions are
bounded and monotone as just described, the flow has a limit
point Ω �= (0, 0). By uniqueness of the equilibrium point, the
limit point Ω is identical with the point (δ1, δ2).

For the coordinate axes, note that if s̃ = 0, then the vector
field is of the form (−as, as) and so points into I0. By the
theory of ODE’s, the flow is carried into I0. Now, argue as
above. In the same way, if s = 0, the vector field is of the
form

(
bs̃, u

(
(c− e) s̃− ds̃2

))
, and points into III0 and by

the same reasoning as for the previous case, the flow is carried
into III0. Again, now argue as above.

It follows that (δ1, δ2) is a global attractor for the
(s (ζ) , s̃ (ζ)) system given by equation (50).

Adverting now to

dp̃

dζ
=
μ1

α2
s̃+ p̃− 1

Bα2
α22p̃

2,

the third equation of the ODE given by (31), note that from the
above analysis of equation (37) we get that as time increases,
s̃ approaches δ2. Then, given any ε > 0, the (ζ, p̃) phase-plane
trajectories for the third equation are asymptotically dominated
by logistic equations of the form

dp̃

dζ
=
μ1

α2
δ2 ± ε+ p̃− 1

Bα2
α22p̃

2.

It follows that p̃ converges to the solution of

μ1

α2
δ2 + p̃− 1

Bα2
α22p̃

2 = 0,

which of course gives the same equilibrium value δ3 as in the
Equilibrium 4.

We conclude that (δ1, δ2, δ3) is a global attractor for the
interior of the non-negative cone C for the full system (36),
as claimed.

VIII. CONCLUSION

The PDE terms are used to include spatial diffusion of cell
populations prostate cancer stem cells and progeny of cancer
stem cells. The stem cells are stationary in proximal region
where they reside. The advection term is included for biased
cancer stem cells motion. Then intensity poisson process terms
are included in the PDEs. correspond with normally observed
spatial expansion of an avascular tumor. The traveling wave
solutions, which lead to a derived ODE are investigated.
The non-negative cone for the traveling wave system is time
invariant is showed. This was important to show that prostate
cancer cells are persistent. Then proved that the traveling
waves have a unique global attractor. Conclusion comments
on clinical implications of the model are made.

Consistent with contemporary perspectives, one thinks
that promising avenues for continued research will in-
clude the development of heterogeneity models, and more
complete and clinically verifiable systems based models.
These could include transient amplifying cells, luminal
cells, as well as cellular and biochemical response terms
in both the organism and the cancerous subsystem. Med-
ical treatment terms could be included in a staged and
progressive study. It might also be possible to investi-
gate the development of new organism response models
for angiogenesis within a multi-scale systems framework.
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Fig. 1: a: Phase diagram of s and s̃ from system of ODEs .
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