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Abstract—Identification of plant diseases has been performed 

using machine learning and deep learning models on the datasets 
containing images of healthy and diseased plant leaves. The current 
study carries out an evaluation of some of the deep learning models 
based on convolutional neural network architectures for identification 
of plant diseases. For this purpose, the publicly available New Plant 
Diseases Dataset, an augmented version of PlantVillage dataset, 
available on Kaggle platform, containing 87,900 images has been used. 
The dataset contained images of 26 diseases of 14 different plants and 
images of 12 healthy plants. The CNN models selected for the study 
presented in this paper are AlexNet, ZFNet, VGGNet (four models), 
GoogLeNet, and ResNet (three models). The selected models are 
trained using PyTorch, an open-source machine learning library, on 
Google Colaboratory. A comparative study has been carried out to 
analyze the high degree of accuracy achieved using these models. The 
highest test accuracy and F1-score of 99.59% and 0.996, respectively, 
were achieved by using GoogLeNet with Mini-batch momentum based 
gradient descent learning algorithm. 
 

Keywords—Comparative analysis, convolutional neural networks, 
deep learning, plant disease identification. 

I. INTRODUCTION 
GRICULTURE plays a vital role in every economy 
worldwide. The economic development of any country 

depends on its agricultural production. Traditionally, farmers 
follow ancestral farming patterns and practices especially in 
developing countries like India. A large section of human 
population is involved in farming as it is the basic need of 
human beings. Agriculture sector accounts for 14% of GDP in 
India. 

A number of activities are involved for ensuring a good yield 
in agriculture, including soil analysis, quality of seed used, 
major nutrient requirement, etc. However, a major challenge 
faced in crop production is in the form of plant diseases, which 
can result in reduction of both the quality and quantity of overall 
yield. It is estimated that pests and diseases lead to loss of 20 – 
40% of global food production constituting a threat to food 
security [1]. Insect pests, bacteria, fungi and viruses are the 
main reasons for crop diseases. Infection with these organisms 
can affect the overall growth of the plants. In addition to the 
stunted growth, there can be decreased production of fruits, leaf 
deformity and increased leaf falls, etc. The organisms spread 
from one crop field to another field, and viruses may be 
transmitted with seeds from one place to another place. 
Traditionally, plant diseases are detected by experts having 
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knowledge and experience in the field. However, finding an 
expert and contacting them is a tedious, time consuming and 
expensive task. It may sometimes take long time, making the 
eradication of the disease difficult. Now with technological 
advances, automatic disease detection is being attempted using 
image processing and computer vision techniques, machine 
learning and deep learning techniques. Most widely used 
machine learning techniques for image classification are 
support vector machines (SVM), artificial neural networks 
(ANN), and random forest. 

H. Rahman et al. (2017) [2] reported random forest classifier 
as the best machine learning method for classification of 
healthy and diseased plants while comparing different machine 
learning approaches for identification of healthy and non-
healthy plant leaves of cabbage (382 images), citrus (539 
images) and sorghum (262 images). H. B. Prajapati et al. (2017) 
[3] presented a prototype system using K-means clustering and 
Support Vector Machine for detection and classification of rice 
diseases, namely Bacterial leaf blight, Brown spot, and Leaf 
smut, and achieved 93.33% accuracy on training dataset and 
73.33% accuracy on the test dataset. P. Alagumariappan et al. 
(2020) [4] developed a real time decision support system 
integrated with a camera sensor module for identification of 
plant diseases and demonstrated that Extreme Learning 
Machine performed better than Support Vector Machine with 
linear and polynomial kernel. 

Convolutional neural networks (CNN, or ConvNet), a class 
of deep neural networks, employ a specialized kind of linear 
operation called convolution, and have been used for analysis 
of visual images. These are being used in applications such as 
image and video recognition, image classification, medical 
image analysis, natural language processing, recommender 
systems, etc. Basic architecture of CNN is composed of five 
parts, namely input, convolution layer, pooling layer, fully 
connected layer, and output layer [5]. The convolution layer 
comprises of a number of filters having dimensions less than 
the dimensions of the input. The convolution operation is 
carried out as depicted in Fig. 1, resulting in an output known 
as convoluted output. If k number of filters are applied, then the 
output is a convolution layer of depth ‘k’, which is also called 
as ‘k feature maps’. Each cell in the feature map corresponds to 
a neuron. The pooling layer is applied on the convoluted layer 
in order to reduce its dimension, while fully connected layers 
connect every neuron in one layer to every neuron in other 
layer. This is similar to the traditional multi-layer perceptron 
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neural network (MLP). In convolutional layer, neurons receive 
input from only a restricted, typically square shaped (e.g., size 
5x5), subarea of the previous layer. The input area of a neuron 
is denoted as its receptive field. Hence, the receptive field for a 
fully connected layer is its entire previous layer. On the other 
hand, the receptive area is smaller than the previous layer for 
the convolutional layer. The vector of the weights is known as 
filters. It represents a particular feature of the input. 

 

 
Fig. 1 Convolution operation 

 
The main advantage of CNN is that many neurons can share 

the same filter. This reduces the memory footprint because in 
place of each receptive field having its own bias and vector 
weighting, all receptive fields share a single vector of weights 
as filter. 

S. P. Mohanty et al. (2016) [6] used 54,306 images of 
diseased and healthy plant leaves collected under controlled 
conditions, available for public use in the PlantVillage dataset, 
to train two deep convolutional neural networks, AlexNet and 
GoogLeNet. They reported that GoogLeNet performed better 
than AlexNet and achieved an accuracy of 99.35%. K. P. 
Ferentinos (2018) [7] reported an error rate of 0.47% with VGG 
on their test dataset while comparing five convolutional neural 
networks architectures (AlexNet, AlexNetOWTBn, 
GoogleNet, Overfeat and VGG) for the identification of plant 
diseases using dataset containing 87,848 images, taken both 
laboratory conditions and real field conditions. J. Boulent et al. 
(2019) [8] carried out a survey of 19 studies that used CNNs for 
identification and classification of plant diseases, to identify 
some of the major shortcomings and issues in these works. In 
six of these studies, models for multiple crops and diseases were 
trained, while in the rest the specialized model focused on a 
single crop. J. Chen et al. (2020) [9] studied transfer learning of 
the deep CNNs using VGG-19 and achieved validation 
accuracy of 91.83% on the dataset containing 500 rice images 
and 466 maize images of diseased leaves. 

In this paper, a comparative analysis of various deep CNN 
models for plant disease identification has been carried out. 

II. DATASET AND METHOD 

A. Dataset Description 
The ‘New Plant Diseases Dataset’ [10], which is an 

augmented version of publicly available PlantVillage dataset 
[11] has been used in the comparative analysis. This dataset 
comprises of 87,867 images and is available on Kaggle 
platform. The dataset is already divided into training and 

validation sets in the ratio of 80:20. Apart from these images, 
another folder containing 33 images is available for testing. 
However, as the images for testing are less, all the images from 
training set, validation set and testing set are combined into one 
folder. This new folder is named as ‘plant disease identification 
dataset (updated)’ which contains total 87,900 images. The total 
number of classes are 38 (Fig. 2) for 14 unique plants. The total 
number of diseased plants are 26, as against 12 healthy plants. 
This new dataset is divided into three parts: training, validation 
and test set, in the ratio of 70:10:20. 

The data related to 14 unique plants is considered, these are, 
Tomato, Bell pepper, Orange, Corn (maize), Grape, Potato, 
Strawberry, Peach, Apple, Squash, Blueberry, Cherry 
(including sour), Raspberry, Soybean. The number of images in 
each class are shown in Table I. 

B. Methodology 
The dataset ‘plant disease identification dataset (updated)’ is 

pre-processed. Standard and well-known CNN architectures 
(AlexNet, ZFNet, VGGNet, GoogLeNet, ResNet) are trained, 
validated and tested on the dataset. Mini-batch momentum 
based gradient descent is used as the learning algorithm. 
Various evaluation metrics such as Accuracy, Loss, Precision, 
Recall and F1-Score, are used for comparing performance of 
these CNN models. 

III. CNN MODELS 

A.  AlexNet 
Alex Krizhevsky et al. [12] proposed in 2012 one of the first 

deep CNN architecture, the AlexNet, that showed some 
excellent results for image classification and recognition tasks. 
It has an eight-layer architecture consisting of five convolution 
layers and three fully connected layers. It is operated with 3-
channel images (RGB images) that are (224x224x3) in size. 
Max pooling is used for subsampling. To improve the 
convergence rate by alleviating the problem of vanishing 
gradient to some extent, ReLU has been used as a non-
saturating activation function. In the initial layers, large size 
filters (11x11 and 5x5) are used, which are followed by smaller 
size (3x3) filter size for rest of the layers, and 3x3 kernels for 
max pooling. Ninety-six filters of size 11x11 with stride 4 are 
used in first conv layer, followed by 256 filters of size 5x5 with 
stride 1 in second conv layer, 384 filters of size 3x3 with stride 
1 in third and fourth conv layers, and 256 filters of size 3x3 with 
stride 1 in fifth conv layer. Each convolution layer is followed 
by batch normalization. Dropout is also used in the first two 
fully-connected layers to reduce overfitting. Softmax as 
activation function is employed for output layer and number of 
trainable parameters is 60 million (M). 

B.  ZFNet 
Zeiler and Fergus in 2013 [13] proposed another CNN 

model, the ZFNet, while working on AlexNet. It was developed 
with the idea to quantitatively visualize the network activity and 
monitor performance of the CNN model by interpreting the 
neurons activation. Experimental validation of this idea of 
feature visualization was carried out by the authors on AlexNet. 
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It was noted that in the first and second layers of the network, 
only a few neurons were active while others were inactive. 
Based on these findings, CNN topology was adjusted and 
parameter optimization was carried out. The learning of CNN 
model was maximized by decreasing filter sizes and stride to 
retain maximum number of features in initial two convolutional 
layers. 

 
TABLE I 

NUMBER OF IMAGES FOR EACH CLASS OF THE DATASET 

Class Scientific Name Number 
of images

Apple (Apple scab) Venturia inaequalis 2523 
Apple (Black rot)  Botryosphaeria obtusa 2484 

Apple (Cedar rust) Gymnosporangium juniperi-virginianae 2204 
Apple healthy - 2510 

Blueberry healthy - 2270 
Bell pepper 

(Bacterial spot) Xanthomonas campestris 2391 

Bell pepper healthy - 2485 
Cherry healthy - 2282 

Cherry (Powdery 
mildew) Podoshaera clandestine 2104 

Corn (Common rust) Puccinia sorghi 2387 
Corn (Gray leaf spot) Cercospora zeae-maydis 2052 

Corn healthy - 2324 
Corn (Northern leaf 

blight)  Exserohilum turcicum 2385 

Grape (Black 
measles (Esca)) 

Phaeomoniella aleophilum, 
Phaeomoniella chlamydospora 2400 

Grape (Black rot) Guignardia bidwellii 2360 
Grape healthy - 2115 

Grape (Leaf blight) Pseudocercospora vitis 2152 
Orange 

Haunglongbing 
(Citrus greening) 

Candidatus Liberibacter spp. 2513 

Peach (Bacterial 
spot) Xanthomonas campestris 2297 

Peach healthy - 2160 
Potato (Early blight) Alternaria solani 2429 

Potato healthy  2282 
Potato (Late blight) Phytophthora infestans 2424 
Raspberry healthy - 2226 

Soybean healthy - 2527 
Squash (Powdery 

mildew) Erysiphe cichoracearum 2170 

Strawberry (Leaf 
scorch) Diplocarpon earlianum 2218 

Strawberry healthy - 2280 
Tomato (Bacterial 

spot) 
Xanthomonas campestris pv. 

Vesicatoria 2127 

Tomato (Early 
blight) Alternaria solani 2406 

Tomato healthy - 2411 
Tomato (Late blight) Phytophthora infestans 2314 
Tomato (Leaf mold) Passalora fulva 2352 

Tomato (Mosaic 
virus) - 2238 

Tomato (Septoria 
leaf spot) Septoria lycopersici 2181 

Tomato (Target spot) Corynespora cassiicola 2284 
Tomato (Two-

spotted spider mite) Tetranychus urticae 2176 

Tomato (Yellow leaf 
curl virus) - 2457 

 

 
Fig. 2 Example of leaf images from the ‘plant disease identification 
dataset (updated)’ dataset. (Left to right, then top to bottom) Apple 
scab, Corn (Common rust), Grape (Black rot), Blueberry healthy, 

Apple (Black rot), Apple healthy, Grape healthy, Apple (Cedar rust), 
Cherry healthy, Cherry (Powdery mildew), Corn (Gray leaf spot), 
Corn healthy, Corn (Northern leaf blight), Grape (Black measles 

(Esca)), Grape (Leaf blight), Orange Haunglongbing (Citrus 
greening), Peach (Bacterial spot), Peach healthy, Bell pepper 

(Bacterial spot), Bell pepper healthy, Potato (Early blight), Potato 
healthy, Potato (Late blight), Raspberry healthy, Soybean healthy, 
Squash (Powdery mildew), Strawberry healthy, Strawberry (Leaf 
scorch), Tomato (Bacterial spot), Tomato (Early blight), Tomato 

healthy, Tomato (Late blight), Tomato (Leaf  mold), Tomato 
(Septoria leaf spot), Tomato (Two-spotted spider mite), Tomato 
(Target spot), Tomato (Mosaic virus), Tomato (Yellow leaf curl 

virus) 
 

It also has an eight-layer architecture, five convolution and 
three fully connected layers, and is operated using three-
channel images (RGB images) that are (224x224x3) in size. 
Max pooling is used for subsampling and ReLU is employed as 
in AlexNet. In the first convolutional layer, ninety-six filters of 
size 7x7 with stride 2 are used, while in second convolutional 
layer, 256 filters of size 5x5 with stride 2 are used. Rest of the 
convolutional layers are similar to AlexNet in filter size and 
stride, only the number of filters is increased. 512, 1024, and 
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512 filters are used in third, fourth and fifth convolutional 
layers, respectively. Each convolution layer is followed by 
batch normalization and dropout is used in the first two fully-
connected layers to reduce overfitting. Softmax as activation 
function is employed for output layer and the number of 
trainable parameters is 104 M. 

C. VGGNet 
VGGNet was proposed by Simonyan and Zisserman in 2014 

[14]. Based on the ZFNet findings, the authors replaced the 
large-size filters (11x11 and 5x5 filters) with small size filters 
consisting of a stack of 3x3 filters and demonstrated that such 
use of small size filters can induce the effect of the large size 
filter. This also decreased the computational complexity by 
decreasing the number of parameters, and set a new trend to 
work with smaller size filters in CNN models. Four different 
ConvNet configurations (VGG11, VGG13, VGG16, VGG19) 
were proposed. The input to the model is a fixed-size 224 x 224 
RGB image. It has same back-to-back multiple convolutional 
layers and some intermediate max pooling layers. Throughout 
the network the filter size is 3x3. The convolution stride is fixed 
to 1 pixel. The spatial padding is 1 for 3x3 convolutional layers 
so that the spatial resolution is preserved after convolution. 
Max-pooling is performed over a 2x2 pixel window with stride 
2. Number of trainable parameters are 133 M in VGG-11 and 

VGG-13 is 133 M, 138 M in VGG-16, and 144M in VGG-19. 

D.  GoogLeNet 
GoogLeNet (also known as InceptionNet) was proposed by 

Christian Szegedy et al. [15] in 2014 with the objective to 
achieve high accuracy with lesser computational cost. A new 
concept of ‘inception block’ was introduced which while using 
split, transform and merge idea, carried out multi-scale 
convolutional transformations. Fig. 3 shows the basic 
architecture of inception block. It consists of filters of different 
sizes (1x1, 3x3, and 5x5) so as to have spatial information at 
different scales, both at fine and coarse grain level. This idea 
helped in the learning of various types of variations present in 
the same category of images having different resolutions. 

It is a 22 layers deep network. Inception module is the 
building block of GoogLeNet, and full architecture is a series 
of these Inception modules. Inception Module has 1x1 
convolutions followed by 3x3 and 5x5 convolutions, 3x3 max 
pooling followed by 1x1 convolution, and directly 1x1 
convolutions. Inception Module differ in number of filters 
across different layers. Each Inception layer counts for two 
convolutional layers. Number of trainable parameters is 6 M 
(approx.), hence 12 times less parameters than AlexNet. It 
introduced 1x1 convolutions which reduces the number of 
computations. 
 

 
Fig. 3 Inception Module 

 
E.  ResNet 
Kaiming He et al. in 2015 [16] proposed a revolutionary 

CNN model, the ResNet. It introduced the concept of residual 
learning in CNNs. Use of residual connections led to 
development of an efficient methodology for the training of 
deep networks (Fig. 4). Three different ResNet models were 
proposed (ResNet-50, ResNet-101, ResNet-152). 

There are mostly 3x3 size filters in the convolutional layers. 
Two simple design rules are followed: (1) the layers have the 
same number of filters for the same output feature map size; 
and (2) the number of filters is doubled if the feature map size 
is halved, to preserve the time complexity per layer. 

Even though the ResNet-152 has less computational 
complexity, it is 20 times and 8 times deeper than AlexNet and 
VGG respectively. After every three layers, the residual 
connection (shortcut connection) is added. These shortcut 
connections simply perform identity mapping, and their outputs 
are added to the outputs of the stacked layers. Down-sampling 
is performed by conv3_1, con4_1, and conv5_1 with a stride of 
2. Number of trainable parameters are 23 M, 42 M, and 58 M 
in ResNet-50, ResNet-101 and ResNet-152 respectively. 

 

 
Fig. 4 Residual block 

IV. IMPLEMENTATION 
For implementing these deep CNN models, the Google drive 

is mounted on Google Colaboratory notebook [17]. The zip file 
of ‘Plant disease identification (updated)’ dataset is extracted 
from the google drive and the Python libraries are imported 
including NumPy, Pandas, Matplotlib, PyTorch [18], etc. 
Thereafter, Mlflow [19] is installed and used for logging 
metrics and hyperparameters. 
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Fig. 5 Number of images per class of the dataset 

 
A. Pre-Processing Data 
The number of unique plants, number of diseases and the 

number of images present for each class are calculated and 
plotted as shown in Fig. 5. 

The images have been resized to 224 x 224 (from 256 x 256) 
using Resize() function that is available in transforms package 
of torchvision library. The Dataset is split into three parts: 
training set (61,530 images), validation set (8,790 images) and 
testing set (17,580 images). 

B. Training and Testing  
The architectures of AlexNet, ZFNet, VGGNet, GoogLeNet, 

and ResNet has been created using PyTorch. Since this problem 
deals with classification, therefore cross entropy loss function 
has been used. The training loop is defined (fit function). All 
the models are trained by calling the fit function. 
Hyperparameters are taken as: batch size = 32, learning rate = 
0.001, momentum = 0.9, number of epochs = 25. After each 
epoch, training loss, training accuracy, validation loss and 
validation accuracy are calculated and logged. After training, 
test accuracy and test loss are calculated. Precision, recall and 
F1-score are also calculated. 

V.  RESULTS 

A. Discussion 
This section presents the comparative analysis of deep 

learning convolutional based neural network architectures in 
order to select the best model for the augmented version of the 
PlantVillage dataset i.e., ‘Plant Disease identification 

(updated)’ dataset. Training accuracy, validation accuracy, 
training loss, validation loss, testing accuracy, testing loss, 
precision, recall and F1-score were used for evaluating the 
results obtained. The performance metric, F1-score, is 
considered as the most important evaluation metric. It is the 
harmonic mean of Precision and recall. Therefore, for the task 
of identification of plant diseases, the model that achieved the 
highest F1-score was considered to be most suitable. It was 
observed that training the models for about 25 epochs the 
training as well as the validation accuracy and loss were 
converged. The performances of deep learning architectures are  
represented by line graphs (Figs. 6 and 7). Table II shows the 
overall performance of deep CNN architectures.  

B. Comparative Analysis of Deep CNN Models 
As presented in Fig. 6 and Fig. 7, the performance of deep 

CNN architectures indicates that overfitting and underfitting 
has not occurred. Since the dataset used is balanced unlike 
PlantVillage dataset, the models achieved higher accuracy and 
low loss rate after training them for 25 epochs. Overall, for the 
purpose of comparative study ten different CNN architectures 
were considered. From Table II, Figs. 6 and 7, a few 
observations were made: 
 The GoogLeNet model attained the highest F1-score, 

precision, recall, test accuracy and lowest test loss among 
all the models. It achieved second highest validation 
accuracy i.e., 0.0002 value less than the highest validation 
accuracy attained by VGG13 model and second lowest 
validation i.e., 0.004 value more than the lowest validation 
loss attained by again VGG-13 model. Therefore, for the 
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augmented version of the PlantVillage dataset, GoogLeNet 
can be considered as the best CNN architecture among all 
the models used for doing analysis. It implies that the 
concept of adding Inception blocks in the architecture is 
useful for obtaining higher identification results. 
Moreover, this model has least number of trainable 
parameters i.e., 6 M among all the models considered. 
Therefore, the training is faster for this model as compared 
to others. 

 VGG-13, VGG-19 and ResNet-50 attained the second 
highest F1-score, precision and recall. However, VGG-16 
and ResNet-152 attained the third highest F1-score, 
precision and recall i.e., 0.001 value less than the second 
highest F1-score, precision and recall. ResNet-50 attained 
third highest validation accuracy followed by VGG-19, 
VGG-16, ResNet-152, VGG-11 and ResNet-101. ResNet-
152 and VGG-11 models attained same validation 
accuracy. VGG-19 attained the third lowest validation loss 
followed by ResNet-50, VGG-16, ResNet-152 and VGG-
11. ResNet-50 achieved the second highest test accuracy 
and second lowest test loss followed by VGG-19, VGG-

13, VGG-16, ResNet-152 and VGG-11. Therefore, all 
these models gave comparable results. As ResNet-50 has 
23 M trainable parameters that is around 6x times less than 
the number of trainable parameters for all the four models 
of VGG analyzed. Since ResNet-101 and ResNet-152 have 
more number of convolution layers, and therefore has more 
number of trainable parameters as compared to ResNet-50, 
which in turn increased the training time. Therefore, 
ResNet-50 can be considered as second best model for 
plant disease identification dataset. 

 VGG-13, VGG-19 and ResNet-50 attained comparable 
results. However, the number of trainable parameters in 
VGG-13 is less than VGG-19. Therefore, VGG-13 can be 
considered as third best model for plant disease 
identification dataset. 

 ZFNet attained the least F1-score, precision and recall 
among all the models analyzed, followed by AlexNet. Both 
the models took five to six more epochs to converge as 
compared to other models analyzed as shown in the Figs. 6 
and 7. They attained low validation and test accuracy and 
high validation and test loss among all the models. 

 
TABLE II 

PERFORMANCE OF VARIOUS DEEP LEARNING ARCHITECTURES 
Deep Learning 
Architectures 

Training 
Accuracy 

Training 
Loss 

Validation 
Accuracy Validation Loss Precision Recall F1-score Test Accuracy Test Loss 

AlexNet 0.9968 0.0110 0.9696 0.1019 0.968 0.967 0.967 0.9674 0.1128 
ZFNet 0.9924 0.0250 0.9637 0.1139 0.962 0.961 0.961 0.9612 0.1269 

VGG-11 0.9991 0.0026 0.9917 0.0277 0.992 0.991 0.992 0.9916 0.0326 
VGG-13 0.9996 0.0010 0.9950 0.0148 0.994 0.994 0.994 0.9938 0.0199 
VGG-16 0.9992 0.0022 0.9929 0.0244 0.993 0.993 0.993 0.9931 0.0247 
VGG-19 0.9998 0.0006 0.9935 0.0197 0.994 0.994 0.994 0.9940 0.0200 

GoogLeNet 0.9995 0.0015 0.9948 0.0188 0.996 0.996 0.996 0.9959 0.0136 
ResNet-50 0.9999 0.0004 0.9938 0.0226 0.994 0.994 0.994 0.9944 0.0197 

ResNet-101 0.9987 0.0046 0.9885 0.0416 0.988 0.988 0.988 0.9878 0.0407 
ResNet-152 0.9992 0.0031 0.9917 0.0257 0.993 0.993 0.993 0.9927 0.0250 

 

 

(a) AlexNet, ZFNet 
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(b) GoogLeNet, VGG-13, ResNet-50, VGG-19 

 

 
(c) VGG-11, VGG-16, ResNet-152, ResNet-101 

Fig. 6 Training loss and Validation loss after each epoch of (a) AlexNet, ZFNet, (b) GoogLeNet, VGG-13, ResNet-50, VGG-19, (c) VGG-11, 
VGG-16, ResNet-152, ResNet-101 
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(a) AlexNet, ZFNet 

 

 
(b) GoogLeNet, VGG-13, ResNet-50, VGG-19 

 

 
(c) VGG-11, VGG-16, ResNet-152, ResNet-101 

Fig. 7 Training accuracy and Validation accuracy after each epoch of (a) AlexNet, ZFNet, (b) GoogLeNet, VGG-13, ResNet-50, VGG-19, (c) 
VGG-11, VGG-16, ResNet-152, ResNet-101 
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VI. CONCLUSION 
In this paper, a comparative analysis has been performed 

among various standard well known deep learning models for 
plant disease identification task. It was found that GoogLeNet 
attained the highest F1-score, test accuracy and lowest test loss 
and has lowest number of trainable parameters among all the 
models. Therefore, the most suitable model for the 
identification of plant diseases was found out to be GoogLeNet 
among all the models analyzed. ResNet-50 can be considered 
as second best model followed by VGG-13. However, in future 
the performance of other standard and modified versions of 
convolutional models can also be analyzed. Various deep 
learning based optimizers such as Rmsprop, Adam, Adagrad 
and Adadelta can be used in future to enhance the performance 
of the models for plant disease identification.    

REFERENCES 
[1] “Plant Health and Food Security”, Food and Agriculture Organization of 

the United Nation, International Plant Protection Convention, 2017. 
[2] H. Rahman et al.., “A comparative analysis of machine learning 

approaches for plant disease identification,” in Advancements in Life 
Sciences – International Quarterly Journal of Biological Sciences, pp. 
120-126, Aug 2017. 

[3] H. B. Prajapati, J. P. Shah and V. K. Dabhi, “Detection and Classification 
of Rice Plant Diseases,” in Intelligent Decision Technologies, IOS Press, 
pp. 357-375, 29 Aug 2017. 

[4] P. Alagumariappan et al.., “Intelligent Plant Disease Identification System 
Using Machine Learning,” in Eng. Proc., 14 Nov 2020. 

[5] A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, “A Survey of the 
Recent Architectures of Deep Convolutional Neural Networks,” in 
Artificial Intelligence Review, 21 Apr 2020. 

[6] S. P. Mohanty, D. Hughes and M. Salathé, “Using Deep Learning for 
Image-Based Plant Disease Detection”, Frontiers in Plant Science, vol.  
7, 2016. 

[7] K. P. Ferentinos, “Deep learning models for plant disease detection and 
diagnosis,” in Computers and Electronics in Agriculture, pp. 311-318, 
2018. 

[8] J. Boulent, S. Foucher, J. Théau and P. St-Charles, “Convolutional Neural 
Networks for the Automatic Identification of Plant Diseases,” in Front. 
Plant Sci., 23 July 2019. 

[9] J. Chen, J. Chen, D. Zhang, Y. Sun and Y. A. Nanehkaran, “Using deep 
transfer learning for image-based plant disease identification,” in 
Computers and Electronics in Agriculture, 2020. 

[10] S. Bhattarai, “New Plant Diseases Dataset,” Kaggle.com, 2018. (Online). 
Available: https://www.kaggle.com/vipoooool/new-plant-diseases-
dataset. (Accessed: 21- Apr- 2021). 

[11] D. P. Hughes and M. Salathé, “An open access repository of images on 
plant health to enable the development of mobile disease diagnostics,” 
arXiv:1511.08060, 2015. 

[12] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification 
with Deep Convolutional Neural Networks,” in NIPS, 2012. 

[13] M. D. Zeiler and R. Fergus, “Visualizing and Understanding 
Convolutional Networks,” arXiv:1311.2901v3 (cs.CV), 28 Nov 2013. 

[14] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for 
Large-Scale Image Recognition,” arXiv:1409.21556v6 (cs.CV), 10 Apr 
2015.  

[15] C. Szegedy et al.., “Going deeper with convolutions,” arXiv:1409.4842v1 
(cs.CV), 17 Sep 2014. 

[16] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image 
Recognition,” arXiv:1512.03385v1 (cs.CV), 10 Dec 2015. 

[17] “Google Colaboratory”, Colab.research.google.com. (Online). Available: 
https://colab.research.google.com/notebooks/intro.ipynb?utm_source=sc
s-index#recent=true. (Accessed: 01- May- 2021). 

[18] “PyTorch documentation – PyTorch 1.8.1 documentation,” PyTorch.org. 
(Online). Available:  https://pytorch.org/docs/stable/index.html. 
(Accessed: 03- May-  2021). 

[19] “Quickstart – Mlflow 1.17.0 documentation,” Mlflow.org. (Online). 
Available: https://www.mlflow.org/docs/latest/quickstart.html. 
(Accessed: 08- May- 2021). 

 

Powered by TCPDF (www.tcpdf.org)

114International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
gr

ic
ul

tu
ra

l a
nd

 B
io

sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

29
0.

pd
f

http://www.tcpdf.org

