Search results for: Quantum yields
315 Network of Coupled Stochastic Oscillators and One-way Quantum Computations
Authors: Eugene Grichuk, Margarita Kuzmina, Eduard Manykin
Abstract:
A network of coupled stochastic oscillators is proposed for modeling of a cluster of entangled qubits that is exploited as a computation resource in one-way quantum computation schemes. A qubit model has been designed as a stochastic oscillator formed by a pair of coupled limit cycle oscillators with chaotically modulated limit cycle radii and frequencies. The qubit simulates the behavior of electric field of polarized light beam and adequately imitates the states of two-level quantum system. A cluster of entangled qubits can be associated with a beam of polarized light, light polarization degree being directly related to cluster entanglement degree. Oscillatory network, imitating qubit cluster, is designed, and system of equations for network dynamics has been written. The constructions of one-qubit gates are suggested. Changing of cluster entanglement degree caused by measurements can be exactly calculated.Keywords: network of stochastic oscillators, one-way quantumcomputations, a beam of polarized light.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401314 Quantum-Like Approach for Deriving a Theory Describing the Concept of Interpretation
Authors: Yehuda Roth
Abstract:
In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.
Keywords: Interpretation, ambiguous images, data reception, state matching, classification, determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190313 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.
Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461312 Ovshinsky Effect by Quantum Mechanics
Authors: Thomas V. Prevenslik
Abstract:
Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance.Keywords: Ovshinsky, phase change memory, PC-RAM, chalcogenide, quantummechanics, quantum electrodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691311 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58310 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma
Authors: A. Abdikian
Abstract:
Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367309 Effect of Three Sand Types on Potato Vegetative Growth and Yield
Authors: Shatha A. Yousif, Qasim M. Zamil, Hasan Y. Al Muhi, Jamal A. Al Shammari
Abstract:
Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world –wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of minitubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight.
Keywords: Correlation, Potato, Sand Culture, Yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650308 Decoy-pulse Protocol for Frequency-coded Quantum Key Distribution
Authors: Sudeshna Bhattacharya, Pratyush Pandey, Pradeep Kumar K
Abstract:
We propose a decoy-pulse protocol for frequency-coded implementation of B92 quantum key distribution protocol. A direct extension of decoy-pulse method to frequency-coding scheme results in security loss as an eavesdropper can distinguish between signal and decoy pulses by measuring the carrier photon number without affecting other statistics. We overcome this problem by optimizing the ratio of carrier photon number of decoy-to-signal pulse to be as close to unity as possible. In our method the switching between signal and decoy pulses is achieved by changing the amplitude of RF signal as opposed to modulating the intensity of optical signal thus reducing system cost. We find an improvement by a factor of 100 approximately in the key generation rate using decoy-state protocol. We also study the effect of source fluctuation on key rate. Our simulation results show a key generation rate of 1.5×10-4/pulse for link lengths up to 70km. Finally, we discuss the optimum value of average photon number of signal pulse for a given key rate while also optimizing the carrier ratio.
Keywords: B92, decoy-pulse, frequency-coding, quantum key distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727307 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.
Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405306 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: Biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535305 Plug and Play Interferometer Configuration using Single Modulator Technique
Authors: Norshamsuri Ali, Hafizulfika, Salim Ali Al-Kathiri, Abdulla Al-Attas, Suhairi Saharudin, Mohamed Ridza Wahiddin
Abstract:
We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.Keywords: single photon, interferometer, quantum key distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621304 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026303 Decentralised Edge Authentication in the Industrial Enterprise IoT Space
Authors: C. P. Autry, A.W. Roscoe
Abstract:
Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.
Keywords: Authentication, enterprise IoT cybersecurity, public key infrastructure, trusted third party.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472302 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979301 A Physical Theory of Information vs. a Mathematical Theory of Communication
Authors: Manouchehr Amiri
Abstract:
This article presents a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary Data Matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principle is investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Bekenstein, and mass-energy equivalence are derived.
Keywords: Physical theory of information, binary data matrix model, Shannon information theory, bit information principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146300 3D Quantum Numerical Simulation of Horizontal Rectangular Dual Metal Gate\Gate All Around MOSFETs
Authors: M. Khaouani, A. Guen-Bouazza, B. Bouazza, Z. Kourdi
Abstract:
The integrity and issues related to electrostatic performance associated with scaling Si MOSFET bulk sub 10nm channel length promotes research in new device architectures such as SOI, double gate and GAA MOSFET. In this paper, we present some novel characteristic of horizontal rectangular gate\gate all around MOSFETs with dual metal of gate we obtained using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure, that having a direct impact on their threshold voltage and drain current. In addition, our TFET showed reasonable ION/IOFF ratio of (104) and low drain induced barrier lowering (DIBL) of 39 mV/V.
Keywords: GAA, SILVACO, QUANTUM, MOSFETs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905299 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method
Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar
Abstract:
Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536298 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures
Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar
Abstract:
Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673297 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes
Authors: A. Abdikian
Abstract:
Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.
Keywords: Transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080296 Numerical Modeling of Artisanal and Small-Scale Mining of Coltan in the African Great Lakes Region
Authors: Sergio Perez Rodriguez
Abstract:
Findings of a production model of Artisanal and Small-Scale Mining (ASM) of coltan ore by an average Democratic Republic of Congo (DRC) mineworker are presented in this paper. These can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the Africa's Great Lakes region. To that end, the Fundamental Equation of Mineral Production has been applied in this paper, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to 10 hours of daily working sessions that these artisanal laborers can attend during the mining season.
Keywords: Coltan, mineral production, Production to Reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194295 Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel
Authors: Joana M. Dias, Conceição A. Ferraz, Manuel F. Almeida
Abstract:
Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.
Keywords: Biodiesel, mixtures, transesterification, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550294 The Self-Energy of an Ellectron Bound in a Coulomb Field
Authors: J. Zamastil, V. Patkos
Abstract:
Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.
Keywords: Hydrogen-like atoms, self-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680293 Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions
Authors: Camila da Silva, Simone Belorte de Andrade, Vitor Augusto dos Santos Garcia, Vladimir Ferreira Cabral, J. Vladimir Oliveira Lúcio Cardozo-Filho
Abstract:
In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration.
Keywords: Packed bed reactor, ethyl esters, continuous process, catalyst-free process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297292 Photon Localization inside a Waveguide Modeled by Uncertainty Principle
Authors: Shilpa N. Kulkarni, Sujata R. Patrikar
Abstract:
In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918291 Magnesium Foliar Application and Phosphorien Soil Inoculation Positively Affect Pisum sativum L. Plants Grown on Sandy Calcareous Soil
Authors: Saad M. Howladar, Ashraf Sh. Osman, Mostafa M. Rady, Hassan S. Al-Zahrani
Abstract:
The effects of soil inoculation with phosphorien-containing phosphate-dissolving bacteria (PDB) and/or magnesium (Mg) foliar application at the rates of 0, 0.5 and 1mM on growth, green pod and seed yields, and chemical constituents of Pisum sativum L. grown on a sandy calcareous soil were investigated. Results indicated that PDB and/or Mg significantly increased shoot length, number of branches plant–1, total leaf area plant–1 and canopy dry weight plant–1, leaf contents of pigments, soluble sugars, free proline, nitrogen, phosphorus, potassium, magnesium, and calcium, and Ca/Na ratio, while leaf Na content was reduced. PDB and/or Mg also increased green pod and seed yields. We concluded that PDB and Mg have pronounced positive effects on Pisum sativum L. plants grown on sandy calcareous soil. PDB and Mg, therefore, have the potential to be applied for various crops to overcome the adverse effects of the newly-reclaimed sandy calcareous soils.
Keywords: Bio-P-fertilizer, Mg foliar application, Newly-reclaimed soils, Pisum sativum L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930290 XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching
Authors: Masoud Jabbari, Mohammad Kazem Moravvej-Farshi, Rahim Ghayour, Abbas Zarifkar
Abstract:
In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.
Keywords: All-Optical Flip-Flop (AO-FF), Distributed feedback semiconductor optical amplifier (DFB-SOA), Optical Bistability, Multi quantum well (MQW)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564289 Effect of Cowpea (Vigna sinensis L.) with Maize (Zea mays L.) Intercropping on Yield and Its Components
Authors: W. A. Hamd Alla, E. M. Shalaby, R. A. Dawood, A. A. Zohry
Abstract:
A field experiment was carried out at Arab El- Awammer Research Station, Agric. Res. Center. Assiut Governorate during summer seasons of 2013 and 2014. The present study assessed the effect of cowpea with maize intercropping on yield and its components. The experiment comprised of three treatments (sole cowpea, sole maize and cowpea-maize intercrop). The experimental design was a randomized complete block with four replications. Results indicated that intercropped maize plants with cowpea, exhibited greater potentiality and resulted in higher values of most of the studied criteria viz., plant height, number of ears/plant, number of rows/ear, number of grains/row, grains weight/ear, 100–grain weight and straw and grain yields. Fresh and dry forage yields of cowpea were lower in intercropping with maize than sole. Furthermore, the combined of the two seasons revealed that the total Land Equivalent Ratio (LER) between cowpea and maize was 1.65. The Aggressivity (A) maize was 0.45 and cowpea was -0.45. This showed that maize was the dominant crop, whereas cowpea was the dominated. The Competitive Ratio (CR) indicated that maize more competitive than cowpea, maize was 1.75 and cowpea was 0.57. The Actual Yield Loss (AYL) maize was 0.05 and cowpea was -0.40. The Monetary Advantage Index (MAI) was 2360.80.
Keywords: Intercropping, cowpea, maize, land equivalent ratio (LER).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5202288 Reversible Signed Division for Computing Systems
Authors: D. Krishnaveni, M. Geetha Priya
Abstract:
Applications of reversible logic gates in the design of complex integrated circuits provide power optimization. This technique finds a great use in low power CMOS design, optical computing, quantum computing and nanotechnology. This paper proposes a reversible signed division circuit that can divide an n-bit signed dividend with an n-bit signed divisor using non-restoration division logic. The proposed design adequately addresses the ‘delay’ there by improving the efficiency of the circuit. An attempt is made to design a reversible signed division circuit. This paper provides a threshold to build more complex arithmetic systems using reversible logic, thus increasing the performance of computing systems.
Keywords: Low power CMOS, quantum computing, reversible logic gates, shift register, signed division.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263287 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor
Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh
Abstract:
In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.
Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248286 Effect of Transplant Preparation Method on Yield and Agronomic Traits of True Potato Seed (TPS) Progenies in Sahneh Region
Authors: A. Khourgami, M. Rafiee, H. Jafari, Z. Bitarafan
Abstract:
To study the effect of suitable methods for propagation of True Potato Seed (TPS) progenies, transplant and selection of the best progenies, a factorial experiment base on a randomized complete block design was carried out in the research field of Sahneh region, Kermanshah, Iran during 2009-2010. Five selective progenies from CIP (International Potato Center) including CIP.994013, CIP.994002, CIP.994014, CIP.888006, and CIP.994001 and two transplant preparation methods (Paper pot preparation for mechanical cultivation and preparation in transplant trays for manual cultivation) were studied in three replications. Results showed that different progenies had no significant effect on plant height (cm) and tuber yield (t ha-1), whereas had a significant effect on number of tubers per unit area (m2). There was significant difference between transplant preparation methods for plant height and tuber yield. The interaction effect of progenies and transplant preparation method was not significant for these traits. CIP.888006 progeny and paper pot preparation method produced the highest tuber yields. Also CIP.994002 and CIP.994014 progenies considered as the best progenies under paper pot preparation method due to high yields.Keywords: Potato, Solanum tuberosum, TPS progenies, Transplant preparation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703