Search results for: Novel particle swarm optimization
1248 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture
Authors: Ghada Elshafei, Abdelazim Negm
Abstract:
Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.
Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25221247 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.
Keywords: Asphalt, basalt, pavement, recycled aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9691246 Compact Binary Tree Representation of Logic Function with Enhanced Throughput
Authors: Padmanabhan Balasubramanian, C. Ardil
Abstract:
An effective approach for realizing the binary tree structure, representing a combinational logic functionality with enhanced throughput, is discussed in this paper. The optimization in maximum operating frequency was achieved through delay minimization, which in turn was possible by means of reducing the depth of the binary network. The proposed synthesis methodology has been validated by experimentation with FPGA as the target technology. Though our proposal is technology independent, yet the heuristic enables better optimization in throughput even after technology mapping for such Boolean functionality; whose reduced CNF form is associated with a lesser literal cost than its reduced DNF form at the Boolean equation level. For cases otherwise, our method converges to similar results as that of [12]. The practical results obtained for a variety of case studies demonstrate an improvement in the maximum throughput rate for Spartan IIE (XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic families by 10.49% and 13.68% respectively. With respect to the LUTs and IOBUFs required for physical implementation of the requisite non-regenerative logic functionality, the proposed method enabled savings to the tune of 44.35% and 44.67% respectively, over the existing efficient method available in literature [12].
Keywords: Binary logic tree, FPGA based design, Boolean function, Throughput rate, CNF, DNF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061245 Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants
Authors: Ion Miciu
Abstract:
The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).Keywords: Automation System, Cogenerative Power Plant, Control, Monitoring, Real Time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19761244 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.
Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661243 Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology
Authors: Ivana T. Karabegović, Saša S. Stojičević, Dragan T. Veličković, Nada Č. Nikolić, Miodrag L. Lazić
Abstract:
Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.
Keywords: Cherry laurel, Extraction, Multiple regression modeling, Microwave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22301242 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots
Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano
Abstract:
Energy efficiency and locomotion speed are two key parameters for legged robots, thus finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high-speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.
Keywords: Genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661241 Internet Optimization by Negotiating Traffic Times
Authors: Carlos Gonzalez
Abstract:
This paper describes a system to optimize the use of the internet by clients requiring downloading of videos at peak hours. The system consists of a web server belonging to a provider of video contents, a provider of internet communications and a software application running on a client’s computer. The client using the application software will communicate to the video provider a list of the client’s future video demands. The video provider calculates which videos are going to be more in demand for download in the immediate future, and proceeds to request the internet provider the most optimal hours to do the downloading. The times of the downloading will be sent to the application software, which will use the information of pre-established hours negotiated between the video provider and the internet provider to download those videos. The videos will be saved in a special protected section of the user’s hard disk, which will only be accessed by the application software in the client’s computer. When the client is ready to see a video, the application will search the list of current existent videos in the area of the hard disk; if it does exist, it will use this video directly without the need for internet access. We found that the best way to optimize the download traffic of videos is by negotiation between the internet communication provider and the video content provider.
Keywords: Internet optimization, video download, future demands, secure storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5321240 Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands
Authors: Rui Qiu, Giles Hardy, Dong Qu, Robert Trengove, Manjree Agarwal, YongLin Ren
Abstract:
Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means ofKeywords: Gas chromatography, headspace solid-phase microextraction, optimization, volatile compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821239 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.
Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5551238 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.
Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23781237 Power Flow Tracing Based Reactive Power Ancillary Service (AS) in Restructured Power Market
Authors: M. Susithra, R. Gnanadass
Abstract:
Ancillary services are support services which are essential for humanizing and enhancing the reliability and security of the electric power system. Reactive power ancillary service is one of the important ancillary services in a restructured electricity market which determines the cost of supplying ancillary services and finding of how this cost would change with respect to operating decisions. This paper presents a new formation that can be used to minimize the Independent System Operator (ISO)’s total payment for reactive power ancillary service. The modified power flow tracing algorithm estimates the availability of reserve reactive power for ancillary service. In order to find optimum reactive power dispatch, Biogeography based optimization method (BPO) is proposed. Market Reactive Clearing Price (MRCP) is then estimated and it encourages generator companies (GENCOs) to participate in an ancillary service. Finally, optimal weighting factor and real time utilization factor of reactive power give the minimum ISO’s total payment. The effectiveness of proposed design is verified using IEEE 30 bus system.
Keywords: Biogeography based optimization method, Power flow tracing method, Reactive generation capability curve and Reactive power ancillary service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32341236 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance
Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.
Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27401235 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm
Authors: J. S. Yadav, N. P. Patidar, J. Singhai
Abstract:
One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19011234 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.
Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7491233 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361232 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621231 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: Deterioration, simulation, subcontracting, production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001230 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.
Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301229 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate
Authors: F. L. Motta, M. H. A. Santana
Abstract:
Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.
Keywords: Empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21641228 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.
Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551227 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China
Abstract:
With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.
Keywords: Landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8491226 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning
Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto
Abstract:
In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931225 On the Analysis and a Few Optimization Issues of a New iCIM 3000 System at an Academic-Research Oriented Institution
Authors: D. R. Delgado Sobrino, R. Holubek, R. Ružarovský
Abstract:
In the past years, the world has witnessed significant work in the field of Manufacturing. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Closely following all this, due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: moving toward a more intelligent manufacturing, the present paper emerges with the main aim of contributing to the analysis and a few customization issues of a new iCIM 3000 system at the IPSAM. In this process, special emphasis in made on the material flow problem. For this, besides offering a description and analysis of the system and its main parts, also some tips on how to define other possible alternative material flow scenarios and a partial analysis of the combinatorial nature of the problem are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a few figures and expressions which would help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.
Keywords: Flexible/Intelligent assembly/disassembly cell (F/IA/DC), Flexible/Intelligent Manufacturing Systems/Cell (F/IMS/C), Material Flow Optimization/Combinations/Design (MFO/C/D).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20721224 An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks
Authors: P.S. Prakash, S. Selvan
Abstract:
Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.
Keywords: QoS Routing, Optimization, feasible path, multiple constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241223 Is It Important to Measure the Volumetric Mass Density of Nanofluids?
Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui
Abstract:
The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.
Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26651222 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India
Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar
Abstract:
The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.
Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601221 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361220 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation
Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi
Abstract:
Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26101219 Analysis of the Torque Required for Mixing LDPE with Natural Fibre and DCP
Authors: A. E. Delgado, W. Aperador
Abstract:
This study evaluated the incidence of concentrated natural fibre, as well as the effects of adding a crosslinking agent on the torque when those components are mixed with low density polyethylene (LDPE). The natural fibre has a particle size of between 0.8-1.2mm and a moisture content of 0.17%. An internal mixer was used to measure the torque required to mix the polymer with the fibre. The effect of the fibre content and crosslinking agent on the torque was also determined. A change was observed in the morphology of the mixes using SEM differential scanning microscopy.Keywords: WPC, DCP, LDPE, natural fibre, torque.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243