Search results for: Deformation simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3790

Search results for: Deformation simulation

2680 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
2679 3D Numerical Simulation of Scouring around Bridge Piers (Case Study: Bridge 524 Crosses the Tanana River)

Authors: T. Esmaeili, A. A. Dehghani, A. R. Zahiri, K. Suzuki

Abstract:

Due to the three- dimensional flow pattern interacting with bed material, the process of local scour around bridge piers is complex. Modeling 3D flow field and scour hole evolution around a bridge pier is more feasible nowadays because the computational cost and computational time have significantly decreased. In order to evaluate local flow and scouring around a bridge pier, a completely three-dimensional numerical model, SSIIM program, was used. The model solves 3-D Navier-Stokes equations and a bed load conservation equation. The model was applied to simulate local flow and scouring around a bridge pier in a large natural river with four piers. Computation for 1 day of flood condition was carried out to predict the maximum local scour depth. The results show that the SSIIM program can be used efficiently for simulating the scouring in natural rivers. The results also showed that among the various turbulence models, the k-ω model gives more reasonable results.

Keywords: Bridge piers, flood, numerical simulation, SSIIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2887
2678 Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Authors: Kooshyar Passbakhsh, Maryam Yazdi

Abstract:

Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the increasing uses of geosynthetic reinforced soil systems in the regions, which bear frequent earthquakes, the study of dynamic behavior of structures seems necessary. Determining the reinforcement forces is; therefore, one of the most important and main points of discussions in designing retaining walls, by which we prevent from conservative planning. Thus, this paper intended to investigate the effects of such parameters as wall height, acceleration type, vertical spacing of reinforcement, type of reinforcement and soil type on forces and deformation through numerical modeling of the geosynthetic reinforced soil retaining walls (GRSRW) under dynamic loading with finite difference method by using FLAC. The findings indicate rather positive results with each parameter.

Keywords: Geosynthetic Reinforced Soil Retaining Walls (GRSRW), dynamic analysis, Geosynthetic forces, Flac

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
2677 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
2676 Combinatorial Optimisation of Worm Propagationon an Unknown Network

Authors: Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, Guillaume Roblot

Abstract:

Worm propagation profiles have significantly changed since 2003-2004: sudden world outbreaks like Blaster or Slammer have progressively disappeared and slower but stealthier worms appeared since, most of them for botnets dissemination. Decreased worm virulence results in more difficult detection. In this paper, we describe a stealth worm propagation model which has been extensively simulated and analysed on a huge virtual network. The main features of this model is its ability to infect any Internet-like network in a few seconds, whatever may be its size while greatly limiting the reinfection attempt overhead of already infected hosts. The main simulation results shows that the combinatorial topology of routing may have a huge impact on the worm propagation and thus some servers play a more essential and significant role than others. The real-time capability to identify them may be essential to greatly hinder worm propagation.

Keywords: Combinatorial worm, worm spreading, worm virulence, stealth worm, spreading simulation, vertex cover, networktopology, WAST simulator, SuWAST simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
2675 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is  incorporated in several major chemical processes including the  production of ammonia, methanol, hydrogen and ox alcohols. Due to  the strongly endothermic nature of the process, a large amount of heat  is supplied by fuel burning (commonly natural gas) in the furnace  chamber. Reaction conversions, tube catalyst life, energy  consumption and CO2 emission represent the principal factors  affecting the performance of this unit and are directly influenced by  the high operating temperatures and pressures.  This study presents a simulation of the performance of the  reforming of methane in a primary reformer, through a developed  empirical relation which enables to investigate the effects of  operating parameters such as the pressure, temperature, steam to  carbon ratio on the production of hydrogen, as well as the fraction of  non converted methane.  It appears from this analysis that the exit temperature Te, the  operating pressure as well the steam to carbon ratio has an important  effect on the reforming of methane.

 

Keywords: Reforming, methane, performance, hydrogen, parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
2674 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach

Authors: M. Zamurad Shah, M. Kemal Özgören, Raza Samar

Abstract:

This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.

Keywords: Unmanned Aerial Vehicles, Sliding mode control, 3D Guidance, Path following, trajectory tracking, nonlinear sliding manifolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
2673 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: Friction, L-bending, Springback, Stribeck curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
2672 The Influence of Beta Shape Parameters in Project Planning

Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou

Abstract:

Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.

Keywords: Beta distribution, PERT, Monte Carlo Simulation, skewness, project completion time distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
2671 EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids

Authors: B. Chetti, W. A. Crosby

Abstract:

This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.

Keywords: Circular bearing, elastohydrodynamic, stability, couple stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
2670 Degradability Studies of Photodegradable Plastic Film

Authors: Nurul, A.M.Y., Rahmah, M., Muhammad, A.

Abstract:

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

Keywords: Agriculture, mechanical strength, photodegradable polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2729
2669 A Cost Function for Joint Blind Equalization and Phase Recovery

Authors: Reza Berangi, Morteza Babaee, Majid Soleimanipour

Abstract:

In this paper a new cost function for blind equalization is proposed. The proposed cost function, referred to as the modified maximum normalized cumulant criterion (MMNC), is an extension of the previously proposed maximum normalized cumulant criterion (MNC). While the MNC requires a separate phase recovery system after blind equalization, the MMNC performs joint blind equalization and phase recovery. To achieve this, the proposed algorithm maximizes a cost function that considers both amplitude and phase of the equalizer output. The simulation results show that the proposed algorithm has an improved channel equalization effect than the MNC algorithm and simultaneously can correct the phase error that the MNC algorithm is unable to do. The simulation results also show that the MMNC algorithm has lower complexity than the MNC algorithm. Moreover, the MMNC algorithm outperforms the MNC algorithm particularly when the symbols block size is small.

Keywords: Blind equalization, maximum normalized cumulant criterion (MNC), intersymbol interference (ISI), modified MNC criterion (MMNC), phase recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2668 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
2667 Graphical Environment for Modeling Control Systems in Full Scope Training Simulators

Authors: Guillermo Romero-Jiménez, Víctor Jiménez-Sánchez, Edgardo J. Roldán-Villasana

Abstract:

This paper describes the development of a control system model using a graphical software tool. This control system is part of an operator training simulator developed for the National Training Center for Operators of Ixtapantongo (CNCAOI, acronym according to its name in Spanish language) of the Mexico-s Federal Commission of Electricity, CFE). The Department of Simulation of the Electrical Research Institute (IIE) developed this simulator using as reference the Unit I of the Combined Cycle Power Plant El Sauz, located at the centre of Mexico. The first step in the project was the developing of the Gas Turbine System and its control system simulator. The Turbo Gas simulator was finished and delivered to CNCAOI in March 2007 for commercial operation. This simulator is a high-fidelity real time dynamic simulator built and tested for accurate operation over the entire load range. The simulator was used primarily for operator training although it has been used for procedure development and evaluation of plant transients.

Keywords: Operators training, Power plant simulator, simulation environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
2666 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
2665 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study

Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal

Abstract:

In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.

Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5660
2664 Analysis of Target Location Estimation in High Performance Radar System

Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park

Abstract:

In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.

Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
2663 Studying on ARINC653 Partition Run-time Scheduling and Simulation

Authors: Dongliang Wang, Jun Han, Dianfu Ma, Xianqi Zhao

Abstract:

Avionics software is safe-critical embedded software and its architecture is evolving from traditional federated architectures to Integrated Modular Avionics (IMA) to improve resource usability. ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Arinc653 uses two-level scheduling strategies, but current modeling tools only apply to simple problems of Arinc653 two-level scheduling, which only contain time property. In avionics industry, we are always manually allocating tasks and calculating the timing table of a real-time system to ensure it-s running as we design. In this paper we represent an automatically generating strategy which applies to the two scheduling problems with dependent constraints in Arinc653 partition run-time environment. It provides the functionality of automatic generation from the task and partition models to scheduling policy through allocating the tasks to the partitions while following the constraints, and then we design a simulating mechanism to check whether our policy is schedulable or not

Keywords: Arinc653, scheduling, task allocation, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
2662 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels

Authors: S. Ansari Sadrabadi, G. H. Rahimi

Abstract:

In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.

Keywords: FGM, Cylindrical pressure tubes, Small deformation theory, Yield onset, Thermal loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2661 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas

Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed. 

Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
2660 Thermal Buckling of Rectangular FGM Plate with Variation Thickness

Authors: Mostafa Raki, Mahdi Hamzehei

Abstract:

Equilibrium and stability equations of a thin rectangular plate with length a, width b, and thickness h(x)=C1x+C2, made of functionally graded materials under thermal loads are derived based on the first order shear deformation theory. It is assumed that the material properties vary as a power form of thickness coordinate variable z. The derived equilibrium and buckling equations are then solved analytically for a plate with simply supported boundary conditions. One type of thermal loading, uniform temperature rise and gradient through the thickness are considered, and the buckling temperatures are derived. The influences of the plate aspect ratio, the relative thickness, the gradient index and the transverse shear on buckling temperature difference are all discussed.

Keywords: Stability of plate, thermal buckling, rectangularplate, functionally graded material, first order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2659 Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge

Authors: Shatirah Akib, Hossein Basser, Hojat Karami, Afshin Jahangirzadeh

Abstract:

Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.

Keywords: Scour, Bridge pier, numerical simulation, SSIIM 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
2658 Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach

Authors: Mehdi Shamshiri, Mahmud Ashrafizaadeh

Abstract:

The significant effects of the interactions between the system boundaries and the near wall molecules in miniaturized gaseous devices lead to the formation of the Knudsen layer in which the Navier-Stokes-Fourier (NSF) equations fail to predict the correct associated phenomena. In this paper, the well-known lattice Boltzmann method (LBM) is employed to simulate the fluid flow and heat transfer processes in rarefied gaseous micro media. Persuaded by the problematic deficiency of the LBM in capturing the Knudsen layer phenomena, present study tends to concentrate on the effective molecular mean free path concept the main essence of which is to compensate the incapability of this mesoscopic method in dealing with the momentum and energy transport within the above mentioned kinetic boundary layer. The results show qualitative and quantitative accuracy comparable to the solutions of the linearized Boltzmann equation or the DSMC data for the Knudsen numbers of O (1) .

Keywords: Fluid flow and Heat transfer, Knudsen layer, Lattice Boltzmann method (LBM), Micro-scale numerical simulation, Transition regime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
2657 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction

Authors: Hanfei Tuo, Yanzhong Li

Abstract:

This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.

Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
2656 Phase Error Accumulation Methodology for On-Chip Cell Characterization

Authors: Chang Soo Kang, In Ho Im, Sergey Churayev, Timour Paltashev

Abstract:

This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation. It was implemented as digital IP core for semiconductor manufacturing process. Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic to parameters extraction, basic cell layout verification, design simulation and verification are announced.

Keywords: phase error accumulation methodology, gatepropagation delay, Processor Testing, MEMS Testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
2655 Speed -Sensorless Vector Control of Parallel Connected Induction Motor Drive Fed by a Single Inverter using Natural Observer

Authors: R. Gunabalan, V. Subbiah

Abstract:

This paper describes the speed sensorless vector control method of the parallel connected induction motor drive fed by a single inverter. Speed and rotor fluxes of the induction motor are estimated by natural observer with load torque adaptation and adaptive rotor flux observer. The performance parameters speed and rotor fluxes are estimated from the measured terminal voltages and currents. Fourth order induction motor model is used and speed is considered as a parameter. The performance of the natural observer is similar to the conventional observer. The speed of an induction motor is estimated by MATLAB simulation under different speed and load conditions. Estimated values along with other measured states are used for closed loop control. The simulation results show that the natural observer is also effective for parallel connected induction motor drive.

Keywords: natural observer, adaptive observer, sensorless control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
2654 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2653 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura

Abstract:

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
2652 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading

Authors: Ashkan Shafee, Ahmad Fahimifar

Abstract:

There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.

Keywords: Deep excavation, pile group, inclined loading, lateral deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
2651 Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps

Authors: Spiros Mazarakis, George Matzavinos, Peter P. Groumpos

Abstract:

Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed

Keywords: Macroeconomic Models, Mamdani Rule Based- FCMs(MBFCMs), Qualitative and Dynamics System, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878