WASET
	%0 Journal Article
	%A Mehdi Shamshiri and  Mahmud Ashrafizaadeh
	%D 2011
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 49, 2011
	%T Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach
	%U https://publications.waset.org/pdf/13779
	%V 49
	%X The significant effects of the interactions between the
system boundaries and the near wall molecules in miniaturized
gaseous devices lead to the formation of the Knudsen layer in which
the Navier-Stokes-Fourier (NSF) equations fail to predict the correct
associated phenomena. In this paper, the well-known lattice
Boltzmann method (LBM) is employed to simulate the fluid flow and
heat transfer processes in rarefied gaseous micro media. Persuaded
by the problematic deficiency of the LBM in capturing the Knudsen
layer phenomena, present study tends to concentrate on the effective
molecular mean free path concept the main essence of which is to
compensate the incapability of this mesoscopic method in dealing
with the momentum and energy transport within the above mentioned
kinetic boundary layer. The results show qualitative and quantitative
accuracy comparable to the solutions of the linearized Boltzmann
equation or the DSMC data for the Knudsen numbers of O (1) .
	%P 168 - 175