

Abstract—Avionics software is safe-critical embedded software

and its architecture is evolving from traditional federated architectures
to Integrated Modular Avionics (IMA) to improve resource usability.
ARINC 653 (Avionics Application Standard Software Interface) is a
software specification for space and time partitioning in Safety-critical
avionics Real-time operating systems. Arinc653 uses two-level
scheduling strategies, but current modeling tools only apply to simple
problems of Arinc653 two-level scheduling, which only contain time
property. In avionics industry, we are always manually allocating
tasks and calculating the timing table of a real-time system to ensure
it’s running as we design. In this paper we represent an automatically
generating strategy which applies to the two scheduling problems with
dependent constraints in Arinc653 partition run-time environment. It
provides the functionality of automatic generation from the task and
partition models to scheduling policy through allocating the tasks to
the partitions while following the constraints, and then we design a
simulating mechanism to check whether our policy is schedulable or
not.

Keywords—Arinc653, scheduling, task allocation, simulation.

I. INTRODUCTION
OWADAYS, the development of Avionics software
system are facing huge challenges, including increasing

verification cost, rising safety requirement and shortening time
to market demands, caused by sharply increasing software
scale and complexity [1]. Therefore, highly reliable design
methodologies are strongly required for the development and
verification of avionics software. Currently, model-driven
correct-by-construct methodology has become an important
development method in designing safe-critical embedded
system [2].

AADL (Architecture Analysis & Design Language) released
by the SAE in November 2004, is dedicated to embedded real
time systems in safe-critical domains [3]. It provides an
industry-standard, textual and graphic notation with precise
semantics to allows early function or quality properties
verification at the model level and automatically code

Dongliang Wang is with the Institude of Advanced Computer Technology,
School of Computer Science and Engineering, Beihang University, Beijing
China (e-mail:wangdl@act.buaa.edu.cn).

Jun Han, is with the Institude of Advanced Computer Technology, School of
Computer Science and Engineering, Beihang University, Beijing China
(e-mail: Jun_han@buaa.edu.cn).

Dianfu Ma is with the National Lab of Software Development Environment,
School of Computer Science and Engineering, Beihang University, Beijing,
China (e-mail: dfma@buaa.edu.cn).

Xianqi Zhao is with the Institude of Advanced Computer Technology,
School of Computer Science and Engineering, Beihang University, Beijing
China (e-mail:zhaoxq @act.buaa.edu.cn).

generation respecting the requirement specification from the
models, which greatly speeding the development of the system
and assuring high reliability of such system.

And with the rapid development of aviation technology,
computer technology and microelectronics technology, modern
avionics architecture has gradually evolved from the traditional
federated architecture to the integrated modular avionics
system structure (IMA)[4].

IMA integrated all the subsystems on a common computer
platform, so as to greatly reuse various hardware resources. But
this potentially reduces the error control of functions. In order
to introduce the error isolation as which in the federated
architecture into IMA, the concept of partition is introduced in
[5]. This can be achieved through a partitioning of resources
with respect to available time and memory capacities, also
called special partitioning and temporal partitioning
respectively. We can avoid the errors spreading from a function
to another by means of the partition mechanism, thus making
the function software running on the same IMA is like running
on a single and safe computer system.

Several standards for avionics software have been proposed
for IMA, like ARINC653 standard. Considering avionics
application engineers from different application domain mainly
focus on the respective avionics application function logic
design and usually do not care about the execution architecture
the applications will be in. Therefore, we can extract some
properties and focus on these, by which we can model this issue
and analyze it on logic level.

According to the above requirements for the avionics
software, we have proposed an AADL-based model-driven
mechanism to facilitate the development of the avionics
software constructed on ARINC653 OS more easily, rapidly
and reliably. This paper mainly focuses on the scheduling parts
in which we can automatically generate the scheduling policy
through analyze the models of tasks and partitions and then
allocate the tasks to the partitions while follow the constraints.
In this paper we represent an automatically generating strategy
and then we give a simulating mechanism to check whether our
policy is schedulable or not.

The rest of this paper is organized as follows. Section II
gives a brief introduction to Arinc653 and two-level scheduling.
Section III discusses the modeling method for avionics tasks
and the automatically generating strategy with a case study. In
Section IV, an simulating mechanism is discussed. Finally,
Section V ends this paper with a conclusion and future work.

Studying on ARINC653 Partition Run-time
Scheduling and Simulation
Dongliang Wang, Jun Han, Dianfu Ma, and Xianqi Zhao

N

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1482International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
69

.p
df

II. OVERVIEW OF ARINC653
A. ARINC653
ARINC653 standard is aimed to define a general-purpose

interface for avionics application software in the partition
execution environment and widely employed by manufacturers
in the avionics industry [6]. It supports time and space
partitioning in accordance with the IMA philosophy. Fig. 1 is
an overview of the ARINC653 execution architecture which
contains application software layer, core software layer and
APEX Interface.

Fig. 1 ARINC653 Execution Architecture

In the application software layer, application partition is the

software part of avionics software applications supported by
the core module. The ARINC653 application partition should
have reliable space and time partitions, which limit calling
system services through ARINC653 APEX service interfaces.
The system partition is optional specification of the core
software layer, which needs to call interface beyond APEX
services. It should also have reliable space and time partitions.
These partitions may handle some function such as
communication management of hardware and error
management mode. The operating system kernel in core
software layer provides the API and behaviors defined in the
specification, and it’s a common and standard environment
supporting the implementation of the application software. The
APEX interface is intended to provide a general-purpose
interface between application software and operating systems
in the IMA.

B. Partition
The partition is a core concept in ARINC653 specification,

which is a functional partitioning in avionics applications. The
partition is a core concept in ARINC653 specification, which is
a functional partitioning in avionics applications. Potential
architecture of partition is similar to the multi-tasking
applications of a common computer [5]. Each partition consists
of one or more Concurrent processes, sharing processor
resources. These processes are uniquely identified, and they
contain properties which affect scheduling, synchronization,
and the entire execution.

According to the above, Arinc653 uses the two-level
scheduling, which is the partition-level scheduling and the
process-level scheduling. The main features of partition-level

scheduling are:
 Use partition as scheduling unit
 Partition has no priority
 Scheduling algorithm is pre-defined, and repeated

periodically (configured by integrator only).
In each cycle, the system must allocate at least one time

window to each partition. And the process-level scheduling
uses priority-based preemptive scheduling.

III. ALLOCATION POLICY
In the avionics industry, we are always calculating the timing

table of a real-time system to ensure it’s running as we design.
This can cause a significant time consuming. And when we are
allocating tasks to partitions manually, we cannot guarantee the
correctness either, which may cause excessive consumption of
manual and computing resources. In this section, we represent
an automatically generating strategy which applies to the two
scheduling problems with dependent constraints in Arinc653
partition run-time environment. It provides the functionality of
automatic generation from the task and partition models to
scheduling policy through allocating the tasks to the partitions
while following the constraints.

A. Dependency Constraint
In the airborne avionics systems, the main objective is to use

the control signals from the joystick, pedals to control the
rudder and the engine, so as to control the aircraft's attitude
changes. Onboard computer system can also calculate the
corresponding control commands according to flight plan
formulated in advance and the current state parameters of
aircraft, so as to realize the autopilot. In this scenario, we are
aiming to allocating some tasks to subsystems (here we use
partition).

The interaction between avionics system and environment is
the existence of an objective, independent of the cognitive
behavior of designers. Interaction between avionics system and
environment can be as follows: interaction with atmospheric
data, interaction with navigation equipment, interaction with
aircraft attitude control, interaction with the engine control,
interaction with data communication and interaction with
database and so on.

We can represent the interaction between the system and the
environment as a set: { , , }X S Y

Wherein the set of system input is the collection of data of all
the input:

{ , , , ,

, , }

X AirData IRS RNS PitchControl

FlightMode DataLinkin DataBasein

=

The set of system output is all output data collection:
{ , , , ,

, }

Y Elevator Ailerons Rudder Engine

DataLinkout DataBaseout

=

There is a sequence relationship between the input and the
output, i.e. when one or several of the input data arrives or
changes, some output data may be consequently generated or
changed. Therefore, we use a duality to describe such a
sequence relationship.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1483International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
69

.p
df

In airborne systems, each output data must be calculated
from the input data and the intermediate data obtained by a
series input data. So there is a series of set
 1 1{ , }{ , }, ,..., , }{ ,..., , , }{i m j ii mx x x x x s t t yr r s+ + ,

which is able to describe how the system calculated output data
by the input data and intermediate data.

We may take a simplified case system S as an example, the
tasks and their sequence relationship are as follows:

 Task AD: { , , }AD AD ADX S Y

(,)

{ }

{ }

AD

AD

AD

X

Y

R AirSensor AirData

AirSensor

AirData

=

=

=

 Task NP: { , , }NP NP NPX S Y

{ , }

(, ,)

{ }

NP

NP

NP

X

Y

GPS AirData

R IRS AirData Attitude

Attitude

=

=

=

 Task NA: { , , }NA NA NAX S Y

(,)

{ }

{ }

NA

NA

NA

X

Y

R IRS Position

GPS

Position

=

=

=

 Task FM: { , , }FM FM FMX S Y

{ , }

{ }

(, ,)

FM

FM

FM

X AirData Attitude

Y PitchData

R AirData Attitude PitchData

=

=

=

 Task FCS: { , , }FC FC FCX S Y

{ , }

{ }

(,)

FC

FC

FC

X PitchControl PitchData

Y Elevator

R PitchControl PitchData

=

=

=

Here are four subsystems and their input data, output data
and their sequence relationship. Obviously, there is a sequence
relationship among them, as we can see in Fig. 2:

Fig. 2 The structure

In system S, we can easily get an execution sequence, which
is AD, NP, NA, FM, FC. But if there is another system T same
as system S, and the elevator is controlled by both of them. That
is the elevator is put out only when both systems are finished.
Then we can make a execution sequence same as System S.

According to the above, dependency constraint exist among
tasks in avionics systems. Through observation, we found that
there are some tasks that have similar function, and some tasks
have the same or partly same input. And there may also be some
tasks the preorder task of which is the same. All these
dependency constraints limit our allocating of tasks, but at the
same time, they will help us remove some allocation schemes
that do not satisfy these constraints. So this can help reduce the
size of the problem.

Observing the structure and data path figure above, we can
get that AD must execute before NP, NA and NS share the
same input data. In the general case, there will also be these
kinds of result. So we can group the tasks according to the
dependency constraint. We define the grouping rule as follows:

 Tasks with the same pre-order task will be in the same
group.

 Tasks needing the same data (like IRS in the case) will be
in the same group.

 Tasks with sequence relationships must be the different
groups (like ADC and NS)

Through these rules, we can get a series of groups:

{{ },{ , },{ },{ }}AD NP NA FM FC

B. Allocating Policy
In ARINC653 two-level scheduling, the operating system

periodically schedules the partition assignment processor
according to the main time frame with a fixed length of time. In
this section, we will give an allocation strategy which
automatically generates one or a group of partition scheduling
window for a given set of task as well as partition model. (See
Fig. 3):

Fig. 3 Allocation of tasks to partition

In this paper, we focus on the problem with dependency

constraint and timing constraint. We can define the task and
partition model as follows:

Definition 1:
Assume that the system have partition

1 2
{ , ..., | 1},

N
P P P P N= ≥ ,

each partition have parameters tuples (TL, Dur), where Dur is

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1484International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
69

.p
df

the partition duration, and TL is the tasks set allocated to the
partition, initially empty.

Definition 2:
Assume that the system has a task set

1 2
{ , , ..., | 1}

M
T T T T M= ≥ ,

each task with the time parameters Triples <c, p, d>, where c is
the task execution time, p is the period of the task, d is the
deadline of the task. Each task has a dependency
constraint { | 1 }i i M≤ ≤ , where i represent the pre-order task,

denoted by Con. Thus the parameters of task iT can be denoted

as , , ,
i i i i

c p d Con< > .
Definition 3:

The main time frame { , ..., | 1 ,1 }
j

W P P i N j N= ≤ ≤ ≤ ≤ , where
each partition has at least one time window in the frame, and
may have more than one.

Given these models, there are always feasible means to find a
rational allocation scheme, which satisfy the timing and
constraints. The easiest way is the brute force method. But this
can waste a lot of time and resources. Taking the dependency
and timing constraint into consideration, according to the above
talking about the dependency constraint, all these dependency
constraints limit our allocating of tasks, but at the same time,
they will help us remove some allocation schemes that do not
satisfy these constraints. The grouping method is as bellow:

TABLE I

THE TASK GROUPING METHOD

TaskGrouping(T)

1 Input: T
2 Output: TG
3 Begin
4 While(TaskRemains>0)
5 Begin
6 T=SelectRemain();//select a task from the remain set, remove it

and take it to a new group G
7 for Ti in Remains

8 Begin
9 if CheckInput(T, Ti) then
10 InGroup(G, Ti) //combine Ti to group G
11 Endif
12 End
13 End
14 While (GroupRemina >0)
15 Begin
16 for Gi in GroupSet
17 Begin

18 if ZeroIndegree(Gi) then //if the indegree of tasks in Gi is
zero

19 Combine(); //combine it to current group

20 IndegreeDecrease(); // the indegree of the remain group
decrease by 1

21 Endif
20 End
21 End
22 End

In the above grouping method, we focus on the indegree and
input of tasks. We can define the indegree of a task as below:

Definition 4:
 If there is no pre-order in front of the task, then the

indegree of the task is 0;
 If there is a pre-order in front of the task, then the indegree

of the task is the indegree of pre-order increase by 1;
 If there are more than one indegree in a task, we choose

the larger one as its indegree.

Fig. 4 Calculation of Indegree

We can see in Fig. 4 that there are 4 groups distinguished by
the indegree.

TABLE II

THE TASK ALLOCATING METHOD

TaskAllocating (,i jG P)

1 Input: ,i jG P

2 Output: W
3 Begin
4 if (i=0) then
5 for k=1 to NG do
6 begin
7 PartitionWindow(1,i kG P+)

8 end
9 endif

10 if (validateTTP(,i kG P) < 0) then

11 if (i=M) then

12 Notes();

13 return

14 else then

15 for k=1 to M do

16 begin

17 TaskToPart(1,i kG P+)

18 end

19 endif

20 else then

21 return

22 endif

23 end

After the grouping, we get a set of sequenced groups the
element of which is a set of tasks. And then we will allocate
these groups to the partitions. In order to simplify the allocation
procedure, we must combine some groups to make the number

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1485International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
69

.p
df

of groups be the same as that of the partitions. So during the
allocation, we just need to allocate one single group to one
partition. As for the case in which some partitions are empty, it
is obviously wasting CPU resources. So we will skip these
cases. The allocating method is as below:

After calling the three methods, we get a allocated main time
frame in which tasks are allocated to the partitions and
partitions are arranged properly.

TABLE III
THE GROUP COMBINE METHOD

GroupCombine (G,P)

1 Input: G, P
2 Output: Gnew
3 if NG<NP then
4 SplitGroups(G,NP)
5 endif
6 else if NG>NP
7 CombineGP(G,NP)//combine the ones that have partly same

input, otherwise combine the ones that have smaller capacity
 endif
8 else
9 TaskAllocating(G,P)

10 endif

IV. SIMULATING MECHANISM
In this paper, we will verify whether current scheduling

window is schedulable by means of Simulation execution for a
period of time, the length of which is decided by users. We
calculate the priorities of tasks in every time unit, and then
choose the task with the highest priority to execute. Therefor
we get a processor allocation table and scheduling events table
(processor preemption, partition switching event). After this,
we can do some computational analysis. And the simulating
tool we give here is web-based, and is aimed to deal with
Arinc653 two-level scheduling issues.

A. Simulation Process
The simulation process is divided into three stages [8], the

priority stage, queuing stage, election stage, as shown below in
Fig. 5:

Fig. 5 Simulation process

Because in the ARINC653 two-level scheduling, task
scheduling uses priority based preemptive strategy, then task
scheduling simulation is for priority calculation. We can
determine whether the task scheduling is a dynamic priority or
static priority scheduling through the scheduling algorithm
inside the partitions.

In queuing stage and election stage, Tasks queue according
to priority in partition, task with high priority takes up high
position in the queue. The system will select the task with the
highest priority in queue to execute. After this, it will record the
current events, that is, whether preemption or partitions switch
occurs.

B. Event Analysis
In this paper, we have two ways to perform schedulability

analysis that is simulation and feasibility test. In the previous
section, we calculate and record two tables, the processor table
and the event table, which contains basic information about
scheduling. We can do some data analysis based on the event
table, calculated for example, the worst, best, average response
time, the worst, best, average blocking time , turnaround time,
and whether there is a task exceeds its deadline and so on.

V. CONCLUSION
In this paper we provide a utility for Arinc653 two-level

study. We can automatically generate the scheduling policy
through analyze the models of tasks and partitions and then
allocate the tasks to the partitions while follow the constraints.
And then we give a simulating mechanism to check whether
our policy is schedulable or not. All of these implementations
may form a useful tool for research.

 Future work will focus on other constraint such as
communication, and the performance of the allocating policy.

REFERENCES
[1] Jean-Louis Camus, “The Airbome Software Development Challenge,”

White Paper, ESTEREL TECHNOLOGIES, March 2010.
[2] Sandeep K. Shukla, “Model-Driven Engineering and Safety-Critical

Embedded Software,” Computer, vol. 42, no. 9, pp. 93-95, Sept. 2009,
doi:10.1109/MC.2009.294

[3] SAE Aerospace. SAE AS5506: Architecture Analysis and Design
Language (AADL), Version 2.0, 2009.

[4] C.B.Watkins and R.Walter, “Transitioning from federated avionics
architectures to Integrated Modular Avionics,” In Proceedings of the
IEEE/AIAA 26th Digital Avionics Systems Conference (DASC ’07),
October 2007.

[5] John Rushby,Partitioning in Avionics Architectures:Requirements,
Mechanisms, and Assurance, Langley Research Center Prepared for
Langley Research Center Hampton, Virginia 23681-2199

[6] Airlines electronic engineering committee (AEEC), avionics application
software standard interface - ARINC specification 653 - part 1
(REQUIRED SERVICES), December 2005, ARINC, Inc.

[7] ARINC CHARACTERISTIC 702A-3, December 15, 2006, ARINC, Inc.
[8] F Singhoff, J Legrand, L Nana, L Marce Cheddar : a Flexible Real Time

Scheduling Framework in ACM SIGADA 2004 International conference
Proceedings (2004)

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1486International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
69

.p
df

