
 

 

  
Abstract—Avionics software is safe-critical embedded software 

and its architecture is evolving from traditional federated architectures 
to Integrated Modular Avionics (IMA) to improve resource usability. 
ARINC 653 (Avionics Application Standard Software Interface) is a 
software specification for space and time partitioning in Safety-critical 
avionics Real-time operating systems. Arinc653 uses two-level 
scheduling strategies, but current modeling tools only apply to simple 
problems of Arinc653 two-level scheduling, which only contain time 
property. In avionics industry, we are always manually allocating 
tasks  and  calculating the timing table of a real-time system to ensure 
it’s running as we design. In this paper we represent an automatically 
generating strategy which applies to the two scheduling problems with 
dependent constraints in Arinc653 partition run-time environment. It 
provides the functionality of automatic generation from the task and 
partition models to scheduling policy through allocating the tasks to 
the partitions while following the constraints, and then we design a 
simulating mechanism to check whether our policy is schedulable or 
not. 
 

Keywords—Arinc653, scheduling, task allocation, simulation. 

I. INTRODUCTION 
OWADAYS, the development of Avionics software 
system are facing huge challenges, including increasing 

verification cost, rising safety requirement and shortening time 
to market demands, caused by sharply increasing software 
scale and complexity [1]. Therefore, highly reliable design 
methodologies are strongly required for the development and 
verification of avionics software. Currently, model-driven 
correct-by-construct methodology has become an important 
development method in designing safe-critical embedded 
system [2]. 

AADL (Architecture Analysis & Design Language) released 
by the SAE in November 2004, is dedicated to embedded real 
time systems in safe-critical domains [3]. It provides an 
industry-standard, textual and graphic notation with precise 
semantics to allows early function or quality properties 
verification at the model level and automatically code 
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generation respecting the requirement specification from the 
models, which greatly speeding the development of the system 
and assuring high reliability of such system. 

And with the rapid development of aviation technology, 
computer technology and microelectronics technology, modern 
avionics architecture has gradually evolved from the traditional 
federated architecture to the integrated modular avionics 
system structure (IMA)[4]. 

IMA integrated all the subsystems on a common computer 
platform, so as to greatly reuse various hardware resources. But 
this potentially reduces the error control of functions. In order 
to introduce the error isolation as which in the federated 
architecture into IMA, the concept of partition is introduced in 
[5]. This can be achieved through a partitioning of resources 
with respect to available time and memory capacities, also 
called special partitioning and temporal partitioning 
respectively. We can avoid the errors spreading from a function 
to another by means of the partition mechanism, thus making 
the function software running on the same IMA is like running 
on a single and safe computer system.  

Several standards for avionics software have been proposed 
for IMA, like ARINC653 standard. Considering avionics 
application engineers from different application domain mainly 
focus on the respective avionics application function logic 
design and usually do not care about the execution architecture 
the applications will be in. Therefore, we can extract some 
properties and focus on these, by which we can model this issue 
and analyze it on logic level. 

According to the above requirements for the avionics 
software, we have proposed an AADL-based model-driven 
mechanism to facilitate the development of the avionics 
software constructed on ARINC653 OS more easily, rapidly 
and reliably. This paper mainly focuses on the scheduling parts 
in which we can automatically generate the scheduling policy 
through analyze the models of tasks and partitions and then 
allocate the tasks to the partitions while follow the constraints. 
In this paper we represent an automatically generating strategy 
and then we give a simulating mechanism to check whether our 
policy is schedulable or not. 

The rest of this paper is organized as follows. Section II 
gives a brief introduction to Arinc653 and two-level scheduling. 
Section III discusses the modeling method for avionics tasks 
and the automatically generating strategy with a case study. In 
Section IV, an simulating mechanism is discussed. Finally, 
Section V ends this paper with a conclusion and future work. 
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II.  OVERVIEW OF ARINC653 
A. ARINC653 
ARINC653 standard is aimed to define a general-purpose 

interface for avionics application software in the partition 
execution environment and widely employed by manufacturers 
in the avionics industry [6]. It supports time and space 
partitioning in accordance with the IMA philosophy. Fig. 1 is 
an overview of the ARINC653 execution architecture which 
contains application software layer, core software layer and 
APEX Interface. 

 

 
Fig. 1 ARINC653 Execution Architecture 

 
In the application software layer, application partition is the 

software part of avionics software applications supported by 
the core module. The ARINC653 application partition should 
have reliable space and time partitions, which limit calling 
system services through ARINC653 APEX service interfaces. 
The system partition is optional specification of the core 
software layer, which needs to call interface beyond APEX 
services. It should also have reliable space and time partitions. 
These partitions may handle some function such as 
communication management of hardware and error 
management mode. The operating system kernel in core 
software layer provides the API and behaviors defined in the 
specification, and it’s a common and standard environment 
supporting the implementation of the application software. The 
APEX interface is intended to provide a general-purpose 
interface between application software and operating systems 
in the IMA. 

B. Partition 
The partition is a core concept in ARINC653 specification, 

which is a functional partitioning in avionics applications. The 
partition is a core concept in ARINC653 specification, which is 
a functional partitioning in avionics applications. Potential 
architecture of partition is similar to the multi-tasking 
applications of a common computer [5]. Each partition consists 
of one or more Concurrent processes, sharing processor 
resources. These processes are uniquely identified, and they 
contain properties which affect scheduling, synchronization, 
and the entire execution. 

According to the above, Arinc653 uses the two-level 
scheduling, which is the partition-level scheduling and the 
process-level scheduling. The main features of partition-level 

scheduling are: 
 Use partition as scheduling unit 
 Partition has no priority 
 Scheduling algorithm is pre-defined, and repeated 

periodically (configured by integrator only). 
In each cycle, the system must allocate at least one time 

window to each partition. And the process-level scheduling 
uses priority-based preemptive scheduling. 

III. ALLOCATION POLICY 
In the avionics industry, we are always calculating the timing 

table of a real-time system to ensure it’s running as we design. 
This can cause a significant time consuming. And when we are 
allocating tasks to partitions manually, we cannot guarantee the 
correctness either, which may cause excessive consumption of 
manual and computing resources. In this section, we represent 
an automatically generating strategy which applies to the two 
scheduling problems with dependent constraints in Arinc653 
partition run-time environment. It provides the functionality of 
automatic generation from the task and partition models to 
scheduling policy through allocating the tasks to the partitions 
while following the constraints. 

A. Dependency Constraint 
In the airborne avionics systems, the main objective is to use 

the control signals from the joystick, pedals to control the 
rudder and the engine, so as to control the aircraft's attitude 
changes. Onboard computer system can also calculate the 
corresponding control commands according to flight plan 
formulated in advance and the current state parameters of 
aircraft, so as to realize the autopilot. In this scenario, we are 
aiming to allocating some tasks to subsystems (here we use 
partition). 

The interaction between avionics system and environment is 
the existence of an objective, independent of the cognitive 
behavior of designers. Interaction between avionics system and 
environment can be as follows: interaction with atmospheric 
data, interaction with navigation equipment, interaction with 
aircraft attitude control, interaction with the engine control, 
interaction with data communication and interaction with 
database and so on. 

We can represent the interaction between the system and the 
environment as a set: { , , }X S Y  

Wherein the set of system input is the collection of data of all 
the input: 

{ , , , ,

, , }

X AirData IRS RNS PitchControl

FlightMode DataLinkin DataBasein

=
 

The set of system output is all output data collection: 
{ , , , ,

, }

Y Elevator Ailerons Rudder Engine

DataLinkout DataBaseout

=
 

There is a sequence relationship between the input and the 
output, i.e. when one or several of the input data arrives or 
changes, some output data may be consequently generated or 
changed. Therefore, we use a duality to describe such a 
sequence relationship. 
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In airborne systems, each output data must be calculated 
from the input data and the intermediate data obtained by a 
series input data. So there is a series of set 
 1 1{ , }{ , }, ,..., , }{ ,..., , , }{i m j ii mx x x x x s t t yr r s+ + , 

which is able to describe how the system calculated output data 
by the input data and intermediate data. 

We may take a simplified case system S as an example, the 
tasks and their sequence relationship are as follows: 

 Task AD: { , , }AD AD ADX S Y  

( , )

{ }

{ }

AD

AD

AD

X

Y

R AirSensor AirData

AirSensor

AirData

=

=

=  

 Task NP: { , , }NP NP NPX S Y  

{ , }

( , , )

{ }

NP

NP

NP

X

Y

GPS AirData

R IRS AirData Attitude

Attitude

=

=

=  

 Task NA: { , , }NA NA NAX S Y  

( , )

{ }

{ }

NA

NA

NA

X

Y

R IRS Position

GPS

Position

=

=

=  

 Task FM: { , , }FM FM FMX S Y  

{ , }

{ }

( , , )

FM

FM

FM

X AirData Attitude

Y PitchData

R AirData Attitude PitchData

=

=

=

 

 Task FCS: { , , }FC FC FCX S Y  

{ , }

{ }

( , )

FC

FC

FC

X PitchControl PitchData

Y Elevator

R PitchControl PitchData

=

=

=

 

Here are four subsystems and their input data, output data 
and their sequence relationship. Obviously, there is a sequence 
relationship among them, as we can see in Fig. 2: 

 
Fig. 2 The structure 

 
 
 

In system S, we can easily get an execution sequence, which 
is AD, NP, NA, FM, FC. But if there is another system T same 
as system S, and the elevator is controlled by both of them. That 
is the elevator is put out only when both systems are finished. 
Then we can make a execution sequence same as System S. 

According to the above, dependency constraint exist among 
tasks in avionics systems. Through observation, we found that 
there are some tasks that have similar function, and some tasks 
have the same or partly same input. And there may also be some 
tasks the preorder task of which is the same. All these 
dependency constraints limit our allocating of tasks, but at the 
same time, they will help us remove some allocation schemes 
that do not satisfy these constraints. So this can help reduce the 
size of the problem. 

Observing the structure and data path figure above, we can 
get that AD must execute before NP, NA and NS share the 
same input data. In the general case, there will also be these 
kinds of result. So we can group the tasks according to the 
dependency constraint. We define the grouping rule as follows: 

 Tasks with the same pre-order task will be in the same 
group. 

 Tasks needing the same data (like IRS in the case) will be 
in the same group. 

 Tasks with sequence relationships must be the different 
groups (like ADC and NS) 

Through these rules, we can get a series of groups: 
 

{{ },{ , },{ },{ }}AD NP NA FM FC  

B. Allocating Policy 
In ARINC653 two-level scheduling, the operating system 

periodically schedules the partition assignment processor 
according to the main time frame with a fixed length of time. In 
this section, we will give an allocation strategy which 
automatically generates one or a group of partition scheduling 
window for a given set of task as well as partition model. (See 
Fig. 3): 

 

 
Fig. 3 Allocation of tasks to partition 

 
In this paper, we focus on the problem with dependency 

constraint and timing constraint. We can define the task and 
partition model as follows: 
 

Definition 1:  
Assume that the system have partition 

1 2
{ , ..., | 1},

N
P P P P N= ≥ , 

each partition have parameters tuples (TL, Dur), where Dur is 
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the partition duration, and TL is the tasks set allocated to the 
partition, initially empty. 
 

Definition 2: 
Assume that the system has a task set 

1 2
{ , , ..., | 1}

M
T T T T M= ≥ , 

each task with the time parameters Triples <c, p, d>, where c is 
the task execution time, p is the period of the task, d is the 
deadline of the task. Each task has a dependency 
constraint { | 1 }i i M≤ ≤ , where i represent the pre-order task, 

denoted by Con. Thus the parameters of task iT  can be denoted 

as , , ,
i i i i

c p d Con< > . 
Definition 3: 

The main time frame { , ..., | 1 ,1 }
j

W P P i N j N= ≤ ≤ ≤ ≤ , where 
each partition has at least one time window in the frame, and 
may have more than one. 

Given these models, there are always feasible means to find a 
rational allocation scheme, which satisfy the timing and 
constraints. The easiest way is the brute force method. But this 
can waste a lot of time and resources. Taking the dependency 
and timing constraint into consideration, according to the above 
talking about the dependency constraint, all these dependency 
constraints limit our allocating of tasks, but at the same time, 
they will help us remove some allocation schemes that do not 
satisfy these constraints. The grouping method is as bellow: 

 
TABLE I 

THE TASK GROUPING METHOD 

TaskGrouping(T) 

1 Input: T 
2 Output: TG 
3 Begin 
4     While( TaskRemains>0) 
5     Begin 
6         T=SelectRemain();//select a task from the remain set, remove it 

and take it to a new group G 
7         for  Ti in Remains 

8         Begin 
9             if CheckInput(T, Ti) then 
10                 InGroup(G, Ti) //combine Ti to group G 
11             Endif 
12         End 
13     End 
14     While (GroupRemina >0) 
15     Begin 
16         for Gi in GroupSet 
17         Begin 

18             if ZeroIndegree(Gi) then //if  the indegree of tasks in Gi is 
zero 

19             Combine(); //combine it to current group 

20             IndegreeDecrease(); // the indegree of the remain group 
decrease by 1 

21             Endif 
20         End 
21     End 
22 End 

 
 

In the above grouping method, we focus on the indegree and 
input of tasks. We can define the indegree of a task as below: 
 

Definition 4: 
 If there is no pre-order in front of the task, then the 

indegree of the task is 0; 
 If there is a pre-order in front of the task, then the indegree 

of the task is the indegree of pre-order increase by 1; 
 If there are more than one indegree in a task, we choose 

the larger one as its indegree. 

 
Fig. 4 Calculation of Indegree 

 

We can see in Fig. 4 that there are 4 groups distinguished by 
the indegree. 

 
TABLE II 

THE TASK ALLOCATING METHOD 

TaskAllocating ( ,i jG P ) 

1 Input: ,i jG P  

2 Output: W 
3 Begin 
4  if ( i=0 ) then 
5 for k=1 to NG do 
6 begin 
7 PartitionWindow( 1,i kG P+ ) 

8 end 
9 endif 

10 if ( validateTTP( ,i kG P ) < 0) then 

11 if ( i=M) then 

12         Notes(); 

13 return 

14 else then 

15 for k=1 to M do 

16 begin 

17             TaskToPart( 1,i kG P+ ) 

18 end 

19 endif 

20 else then 

21 return 

22 endif 

23 end 
 

After the grouping, we get a set of sequenced groups the 
element of which is a set of tasks. And then we will allocate 
these groups to the partitions. In order to simplify the allocation 
procedure, we must combine some groups to make the number 
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of groups be the same as that of the partitions. So during the 
allocation, we just need to allocate one single group to one 
partition. As for the case in which some partitions are empty, it 
is obviously wasting CPU resources. So we will skip these 
cases.  The allocating method is as below: 

After calling the three methods, we get a allocated main time 
frame in which tasks are allocated to the partitions and 
partitions are arranged properly.  
 

TABLE III 
THE GROUP COMBINE METHOD 

GroupCombine (G,P) 

1 Input: G, P 
2 Output: Gnew 
3 if NG<NP then 
4     SplitGroups(G,NP) 
5 endif 
6 else if NG>NP 
7     CombineGP(G,NP)//combine the ones that have partly same 

input, otherwise combine the ones that have smaller capacity 
 endif 
8 else 
9     TaskAllocating(G,P) 

10 endif 

IV. SIMULATING MECHANISM 
In this paper, we will verify whether current scheduling 

window is schedulable by means of Simulation execution for a 
period of time, the length of which is decided by users. We 
calculate the priorities of tasks in every time unit, and then 
choose the task with the highest priority to execute. Therefor 
we get a processor allocation table and scheduling events table 
(processor preemption, partition switching event). After this, 
we can do some computational analysis. And the simulating 
tool we give here is web-based, and is aimed to deal with 
Arinc653 two-level scheduling issues. 

A. Simulation Process 
The simulation process is divided into three stages [8], the 

priority stage, queuing stage, election stage, as shown below in 
Fig. 5: 

 
Fig. 5 Simulation process 

Because in the ARINC653 two-level scheduling, task 
scheduling uses priority based preemptive strategy, then task 
scheduling simulation is for priority calculation. We can 
determine whether the task scheduling is a dynamic priority or 
static priority scheduling through the scheduling algorithm 
inside the partitions. 

In queuing stage and election stage, Tasks queue according 
to priority in partition, task with high priority takes up high 
position in the queue. The system will select the task with the 
highest priority in queue to execute. After this, it will record the 
current events, that is, whether preemption or partitions switch 
occurs. 

B. Event Analysis 
In this paper, we have two ways to perform schedulability 

analysis that is simulation and feasibility test. In the previous 
section, we calculate and record two tables, the processor table 
and the event table, which contains basic information about 
scheduling. We can do some data analysis based on the event 
table, calculated for example, the worst, best, average response 
time, the worst, best, average blocking time , turnaround time, 
and whether there is a task exceeds its deadline and so on. 

V.  CONCLUSION 
In this paper we provide a utility for Arinc653 two-level 

study. We can automatically generate the scheduling policy 
through analyze the models of tasks and partitions and then 
allocate the tasks to the partitions while follow the constraints. 
And then we give a simulating mechanism to check whether 
our policy is schedulable or not. All of these implementations 
may form a useful tool for research. 

 Future work will focus on other constraint such as 
communication, and the performance of the allocating policy. 
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