Search results for: magnetic properties.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3206

Search results for: magnetic properties.

2126 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2125 Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage

Authors: M. S. Kang, D. H. Kim, J. S. Yoon, B. S. Park, J. K. Lee

Abstract:

Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightness error so as to compensate the error. From position dependency and repeatability of the straightness error of the slider, a feedforward compensation control is applied to the platform servo control. In the consideration of required fine positioning accuracy, a platform driven by an electro-magnetic actuator is suggested and a sliding mode control was applied. The effectiveness of the sliding mode control was verified along with some experimental results.

Keywords: Linear Motor Stage, Straightness Error, Friction, Sliding Mode Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
2124 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: Adhesive joint, carbon reinforced aluminium laminate, CARALL, fiber metal laminates, spews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
2123 Preparation and Characterization of Pure PVA and PVA/MMT Matrix: Effect of Thermal Treatment

Authors: Albana Hasimi, Edlira Tako, Partizan Malkaj, Elvin Çomo, Blerina Papajani, Mirela Ndrita, Ledjan Malaj

Abstract:

Many endeavors have been exerted during the last years for developing new artificial polymeric membranes, which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Our teams are based on the possibility of using PVA for personal protective equipment against COVID-19. In personal protective equipment, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature is used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240 oC and overlap of the recrystallization ridges during cooling 240-25 oC. This is indicative of the presence of two types (quality or structure) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in PVA films: PVA pure and PVA/MMT matrix, modified by thermal treatment are presented. The membranes become more rigid as a result of the heat treatment and because of this the water uptake is significantly lower in membranes. That is indicated by analysis of the resulting water uptake kinetics. The presence of 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviate from Fick’s law due to slow relaxation of glassy polymer matrix for all types of membranes.

Keywords: Crystallinity, montmorillonite, nanocomposite, poly(vinyl alcohol).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
2122 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

Authors: Paras Ram, Vikas Kumar

Abstract:

An attempt has been made to study the effect of rotation on incompressible, electrically non-conducting ferrofluid in porous medium on Axi-symmetric steady flow over a rotating disk excluding thermal effects. Here, we solved the boundary layer equations with boundary conditions using Neuringer-Rosensweig model considering the z-axis as the axis of rotation. The non linear boundary layer equations involved in the problem are transformed to the non linear coupled ordinary differential equations by Karman's transformation and solved by power series approximations. Besides numerically calculating the velocity components and pressure for different values of porosity parameter with the variation of Karman's parameter we have also calculated the displacement thickness of boundary layer, the total volume flowing outward the z-axis and angle between wall and ferrofluid. The results for all above variables are obtained numerically and discussed graphically.

Keywords: Ferrofluid, magnetic field porous medium, rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
2121 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

Authors: Seyed Abolhasan Naeini, Ali Namaei

Abstract:

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Keywords: Vertical drain, prefabricated, consolidation, embankment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
2120 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: Discrete logarithm problem, general attacks, elliptic curves, strong curves, prime field, binary field, attack experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
2119 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2118 Effect of Adding Sawdust on Mechanical- Physical Properties of Ceramic Bricks to Obtain Lightweight Building Material

Authors: Bachir Chemani, Halima Chemani

Abstract:

This paper studies the application of a variety of sawdust materials in the production of lightweight insulating bricks. First, the mineralogical and chemical composition of clays was determined. Next, ceramic bricks were fabricated with different quantities of materials (3–6 and 9 wt. % for sawdust, 65 wt. % for grey clay, 24–27 and 30 wt. % for yellow clay and 2 wt% of tuff). These bricks were fired at 800 and 950 °C. The effect of adding this sawdust on the technological behaviour of the brick was assessed by drying and firing shrinkage, water absorption, porosity, bulk density and compressive strength. The results have shown that the optimum sintering temperature is 950 °C. Below this temperature, at 950 °C, increased open porosity was observed, which decreased the compressive strength of the bricks. Based on the results obtained, the optimum amounts of waste were 9 wt. % sawdust of eucalyptus, 24 wt. % shaping moisture and 1.6 particle size diameter. These percentages produced bricks whose mechanical properties were suitable for use as secondary raw materials in ceramic brick production.

Keywords: Clay brick, Porosity, Sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4165
2117 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: Bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
2116 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: Reinforcement, silicon carbide, fly ash, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
2115 Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles

Authors: Ndeye Rokhaya Faye, Ibtissem Gammoudi, Fabien Moroté, Christine Grauby-Heywang, TouriaCohen-Bouhacina

Abstract:

In this study we investigate silica nanoparticle (SiO2- NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their nature. Secondly, lipid molecules in the vinicity of big aggregates nanoparticles organize in liquid condensed phase whereas small aggregates are localized in both fluid liquid-expanded (LE) and liquid-condenced (LC). We demonstrated also by atomic force microscopy that by measuring friction forces it is possible to get information as if nanoparticle aggregates are recovered or not by lipid monolayers and bilayers.

Keywords: Atomic force microscopy, fluorescence microscopy, Langmuir films, silica nanoparticles, supported membrane models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
2114 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements

Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin

Abstract:

An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.

Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2113 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nanocomposite Coatings

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nanocomposite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni- Al2O3 nanocomposite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ- Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nanocomposite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nanoparticles into the coatings.

Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
2112 Remote-Sensing Sunspot Images to Obtain the Sunspot Roads

Authors: Hossein Mirzaee, Farhad Besharati

Abstract:

A combination of image fusion and quad tree decomposition method is used for detecting the sunspot trajectories in each month and computation of the latitudes of these trajectories in each solar hemisphere. Daily solar images taken with SOHO satellite are fused for each month and the result of fused image is decomposed with Quad Tree decomposition method in order to classifying the sunspot trajectories and then to achieve the precise information about latitudes of sunspot trajectories. Also with fusion we deduce some physical remarkable conclusions about sun magnetic fields behavior. Using quad tree decomposition we give information about the region on sun surface and the space angle that tremendous flares and hot plasma gases permeate interplanetary space and attack to satellites and human technical systems. Here sunspot images in June, July and August 2001 are used for studying and give a method to compute the latitude of sunspot trajectories in each month with sunspot images.

Keywords: Quad Tree Decomposition, Sunspot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
2111 Utilization of Bioactive Components Produced from Fermented Soybean (Natto) in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, A. Y. Gibriel, M. H. El-Kalyoubi, A. A. Abou-Arab Arab

Abstract:

Soybean Natto powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactives compound (soybean Natto) as antioxidant and antimicrobial were added at level of 1, 2 and 3%. Chemical analysis and physical properties were affected by soybean Natto addition. All the tested soybean Natto additives showed strong antioxidant properties. The microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean Natto. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing soybean Natto. Sensory attributes were also performed, added soybean Natto exhibits beany flavor which was clear about samples of 3% soybean Natto.

Keywords: Antioxidant, antimicrobial, bioactive peptide, antioxidant peptides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
2110 Tin (II) Chloride a Suitable Wetting Agent for AA1200 - SiC Composites

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, A. S. Abdulmunim

Abstract:

SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.

Keywords: Al-SIC, Aluminum, Composites, Intermetallic, Reinforcement, Tensile Strength, Wetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
2109 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace

Authors: U. Prasopchingchana

Abstract:

The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.

Keywords: Conduction, heat transfer, multi-layer door, natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
2108 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: Goat milk, nutritional quality, bioactive compounds, sustainable production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
2107 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles

Authors: Mirigul Altan, Huseyin Yildirim

Abstract:

Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.

Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3902
2106 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Authors: M. Kakavand, S. A. Naeini

Abstract:

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
2105 Development and Psychometric Properties of the Relational Mobility Scale for the Indonesian Population

Authors: Sukaesi Marianti

Abstract:

This study aims to develop the Relational Mobility Scale for the Indonesian population and to investigate its psychometric properties. New items of the scale were created taking into account the Indonesian population which consists of two parallel forms (A and A’). This study uses 30 newly orchestrated items while keeping in mind the characteristics of the targeted population. The scale was administered to 433 public high school students in Malang, Indonesia. Construct validity of its factor structure was demonstrated using exploratory factor analysis and confirmatory factor analysis. The result exhibits that he model fits the data, and that the delayed alternate form method shows acceptable result. Results yielded that 21 items of the three-dimensional Relational Mobility Scale is suitable for measuring relational mobility in high school students of Indonesian population.

Keywords: Confirmatory factor analysis, exploratory factor analysis, delayed alternate form, Indonesian population, relational mobility scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
2104 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
2103 Co-composting Cow Manure with Food Waste: The Influence of Lipids Content

Authors: Neves, L., Ferreira, V., Oliveira, R.

Abstract:

Addition of an oily waste to a co-composting process of dairy cow manure with food waste, and the influence in the final product was evaluated. Three static composting piles with different substrates concentrations were assessed. Sawdust was also added to all composting piles to attain 60%, humidity at the beginning of the process. In pile 1, the co-substrates were the solid-phase of dairy cow manure, food waste and sawdust as bulking agent. In piles 2 and 3 there was an extra input of oily waste of 7 and 11% of the total volume, respectively, corresponding to 18 and 28% in dry weight. The results showed that the co-composting process was feasible even at the highest fat content. Another positive effect due to the oily waste addition was the requirement of extra humidity, due to the hydrophobic properties of this specific waste, which may imply reduced need of a bulking agent. Moreover, this study shows that composting can be a feasible way of adding value to fatty wastes. The three final composts presented very similar and suitable properties for land application.

Keywords: Cow manure, composting, food waste, lipids content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2102 Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar.

Keywords: Compressive strength, flexural strength, compressive modulus elasticity, time to failure, deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3455
2101 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties, which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8 and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4 and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall Stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: Crumb rubber, dry process, low-density polyethylene, hot mix asphalt, wet process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4716
2100 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions

Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.

Keywords: Antimicrobial, home device, SEBS, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
2099 Manufacturing Process of a Novel Biomass Composite Inspired from Cellular Structure of Wood

Authors: Li Yongfeng, Liu Yixing, Li Jian, Li Jun

Abstract:

A novel biomass composite inspired from wood porous structure was manufactured by impregnating vinyl monomer into wood cellular structure under vacuum conditions, and initiating the monomer for in situ polymerization through a thermal treatment. The vacuum condition was studied, and the mechanical properties of the composite were also tested. SEM observation shows that polymer generated in the wood porous structure, and strongly interacted with wood matrix; and the polymer content increased with vacuum value increasing. FTIR indicates that polymer grafted onto wood matrix, resulting chemical complex between them. The rate of monomer loading increased with increasing vacuum value and time, accordance with rate of polymer loading. The compression strength and modulus of elasticity linearly increased with the increasing rate of polymer loading. Results indicate that the novel biomass composite possesses good mechanical properties capable of applying in the fields of construction, traffic and so forth.

Keywords: Biomass composite, manufacture, vinyl monomer, wood cellular structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
2098 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: Double layered fuzzy graph, double layered non-cyclic fuzzy graph, strong, order, degree and size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
2097 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim

Abstract:

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Keywords: Beam fatigue test, chemical property, mechanical property, physical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821