Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles
Authors: Ndeye Rokhaya Faye, Ibtissem Gammoudi, Fabien Moroté, Christine Grauby-Heywang, TouriaCohen-Bouhacina
Abstract:
In this study we investigate silica nanoparticle (SiO2- NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their nature. Secondly, lipid molecules in the vinicity of big aggregates nanoparticles organize in liquid condensed phase whereas small aggregates are localized in both fluid liquid-expanded (LE) and liquid-condenced (LC). We demonstrated also by atomic force microscopy that by measuring friction forces it is possible to get information as if nanoparticle aggregates are recovered or not by lipid monolayers and bilayers.
Keywords: Atomic force microscopy, fluorescence microscopy, Langmuir films, silica nanoparticles, supported membrane models.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057401
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647References:
[1] Nel, A., et al., Toxic Potential of Materials at the Nanolevel. Science, 2006. 311(5761): p. 622-627.
[2] Leroueil, P.R., et al., Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers. Nano Letters, 2008. 8(2): p. 420- 424.
[3] Jose Ruben, M., et al., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346.
[4] Roiter, Y., et al., Interaction of Nanoparticles with Lipid Membrane. Nano Letters, 2008. 8(3): p. 941-944.
[5] Li, Y., X. Chen, and N. Gu, Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. The Journal of Physical Chemistry B, 2008. 112(51): p. 16647- 16653.
[6] Arvizo, R.R., et al., Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010. 10(7): p. 2543- 2548.
[7] Limbach, L.K., et al., Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effects of Particle Size, Agglomeration, and Diffusion at Low Concentrations. Environmental Science & Technology, 2005. 39(23): p. 9370-9376.
[8] Pujalté, I., et al., Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 2011. 8(1): p. 1-16.
[9] Coccini, T., et al., Apoptosis induction and histological changes in rat kidney following Cd-doped silica nanoparticle exposure: evidence of persisting effects. Toxicology Mechanisms and Methods, 2013: p. 1-27.
[10] Yong, K.-T., et al., Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chemical Society Reviews, 2013. 42(3): p. 1236-1250.
[11] Sonnino, S. and A. Prinetti, Membrane Domains and the Lipid Raft Concept. Current Medicinal Chemistry, 2013. 20(1): p. 4-21.
[12] Li, M., et al., AFM Studies of Solid-Supported Lipid Bilayers Formed at a Au(111) Electrode Surface Using Vesicle Fusion and a Combination of Langmuir−Blodgett and Langmuir−Schaefer Techniques. Langmuir, 2008. 24(18): p. 10313-10323.
[13] Giocondi, M.-C., et al., Remodeling of Ordered Membrane Domains by GPI-Anchored Intestinal Alkaline Phosphatase. Langmuir, 2007. 23(18): p. 9358-9364.
[14] Richter, R.P., R. Bérat, and A.R. Brisson, Formation of Solid-Supported Lipid Bilayers: An Integrated View. Langmuir, 2006. 22(8): p. 3497- 3505.
[15] Faye, N.R., et al., Oxidation of Langmuir–Blodgett films of monounsaturated lipids studied by atomic force microscopy. International Journal of Nanotechnology, 2013. 10(5): p. 390-403.
[16] Morandat, S., et al., Atomic force microscopy of model lipid membranes. Analytical and Bioanalytical Chemistry, 2013. 405(5): p. 1445-1461.
[17] El Kirat, K., S. Morandat, and Y.F. Dufrêne, Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2010. 1798(4): p. 750-765.
[18] Mingeot-Leclercq, M.-P., et al., Atomic force microscopy of supported lipid bilayers. Nat. Protocols, 2008. 3(10): p. 1654-1659.
[19] Bouhacina, T., et al., Oscillation of the cantilever in atomic force microscopy: Probing the sample response at the microsecond scale. Journal of Applied Physics, 1997. 82(8): p. 3652-3660.
[20] Gauthier, S., et al., Study of Grafted Silane Molecules on Silica Surface with an Atomic Force Microscope. Langmuir, 1996. 12(21): p. 5126- 5137.
[21] Bouhacina, T., B. Desbat, and J.P. Aimé, FTIR spectroscopy and nanotribological comparative studies: influence of the adsorbed water layers on the tribological behaviour. Tribology Letters, 2000. 9(1-2): p. 111-117.
[22] Kopp-Marsaudon, S., et al., Quantitative Measurement of the Mechanical Contribution to Tapping-Mode Atomic Force Microscopy Images of Soft Materials. Langmuir, 2000. 16(22): p. 8432-8437.
[23] Parthasarathy, R., C.-h. Yu, and J.T. Groves, Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir, 2006. 22(11): p. 5095-5099.
[24] Holopainen, J.M., et al., Interfacial Interactions of Ceramide with Dimyristoylphosphatidylcholine: Impact of the N-Acyl Chain. Biophysical Journal, 2001. 80(2): p. 765-775.
[25] Grauby-Heywang, C. and J.-M. Turlet, Behavior of GM3 ganglioside in lipid monolayers mimicking rafts or fluid phase in membranes. Chemistry and Physics of Lipids, 2006. 139(1): p. 68-76.
[26] Azouzi, S., K. El Kirat, and S. Morandat, The Potent Antimalarial Drug Cyclosporin A Preferentially Destabilizes Sphingomyelin-Rich Membranes. Langmuir, 2009. 26(3): p. 1960-1965.
[27] 27. Vaknin, D., M.S. Kelley, and B.M. Ocko, Sphingomyelin at the air--water interface. The Journal of Chemical Physics, 2001. 115(16): p. 7697-7704.
[28] Matti, V., et al., Characterization of Mixed Monolayers of Phosphatidylcholine and a Dicationic Gemini Surfactant SS-1 with a Langmuir Balance: Effects Of DNA. Biophysical Journal, 2001. 81(4): p. 2135-2143.
[29] Hong, S., et al., Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chemistry, 2006. 17(3): p. 728- 734.
[30] Mecke, A., et al., Lipid Bilayer Disruption by Polycationic Polymers: The Roles of Size and Chemical Functional Group. Langmuir, 2005. 21(23): p. 10348-10354.
[31] Reimhult, E., F. Höök, and B. Kasemo, Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure†. Langmuir, 2002. 19(5): p. 1681-1691.