Search results for: shear failure
326 SFCL Location Selection Considering Reliability Indices
Authors: Wook-Won Kim, Sung-Yul Kim, Jin-O Kim
Abstract:
The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.Keywords: Superconducting Fault Current Limiter, OptimalLocation, Reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681325 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.
Keywords: Critical height, matric suction, unsaturated soil, unsupported trench.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064324 Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan
Authors: Magdi M. E. Zumrawi
Abstract:
Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings.Keywords: Culvert, erosion, failure, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458323 Effect of the Portland-Limestone Cement Grades on the Compressive Strength of Hollow Sandcrete Blocks
Authors: Kazeem K. Adewole, Gbenga. M. Ayininula, Wasiu O. Ajagbe, Olabisi Akinade
Abstract:
The commercial sandcrete block makers in Nigeria use the same cement-sand mix ratio for sandcrete blocks production irrespective of the cement grade. Investigation revealed that the compressive strengths of hollow sandcrete blocks produced with Portland-limestone cement grade 42.5 are higher than the sandcrete blocks produced with cement grade 32.5. The use of stronger sandcrete blocks produced with cement grade 42.5 will ensure the construction of stronger buildings and other sandcrete blocks-based infrastructures and reduce the incessant failure of building and other sandcrete blocks-based infrastructures in Nigeria at no additional cost as both cement grades cost the same amount in Nigeria. It is recommended that the Standards Organisation of Nigeria should create grassroots awareness on the different cement grades in Nigeria and specify that Portland-limestone cement grade 42.5 be used for sandcrete blocks production.
Keywords: Cement grades, Compressive strength, Sandcrete blocks, Portland-limestone cement, Nigerian cement market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3792322 Availability Analysis of Milling System in a Rice Milling Plant
Authors: P. C. Tewari, Parveen Kumar
Abstract:
The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.Keywords: Markov process, milling system, availability modeling, rice milling plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579321 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids
Authors: M. Wasy Akhtar
Abstract:
Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.
Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743320 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall
Authors: Susanta Banerjee, Sanjaya Kumar Patro
Abstract:
Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.
Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118319 A Framework for Identifying the Critical Factors Affecting the Decision to Adopt and Use Inter-Organizational Information Systems
Authors: K. Bouchbout, Z. Alimazighi
Abstract:
The importance of inter-organizational system (IOS) has been increasingly recognized by organizations. However, IOS adoption has proved to be difficult and, at this stage, why this is so is not fully uncovered. In practice, benefits have often remained concentrated, primarily accruing to the dominant party, resulting in low rates of adoption and usage, and often culminating in the failure of the IOS. The main research question is why organizations initiate or join IOS and what factors influence their adoption and use levels. This paper reviews the literature on IOS adoption and proposes a theoretical framework in order to identify the critical factors to capture a complete picture of IOS adoption. With our proposed critical factors, we are able to investigate their relative contributions to IOS adoption decisions. We obtain findings that suggested that there are five groups of factors that significantly affect the adoption and use decision of IOS in the Supply Chain Management (SCM) context: 1) interorganizational context, 2) organizational context, 3) technological context, 4) perceived costs, and 5) perceived benefits.Keywords: Business-to-Business relationships, buyer-supplier relationships, Critical factors, Interorganizational Information Systems, IOS adoption and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049318 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load
Authors: Karuppsamy K., Eswara Prasad C. R.
Abstract:
In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.
Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048317 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion
Authors: Krishnaiah Arkanti, Ramulu Malothu
Abstract:
The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669316 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron
Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová
Abstract:
The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.
Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539315 Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets
Authors: Lucie Novakova, Petr Homola, Vaclav Kafka
Abstract:
Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.
Keywords: Incremental forming, metallography, hardness, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641314 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.
Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856313 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures
Authors: J. Menčík
Abstract:
Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815312 A Bayesian Network Reliability Modeling for FlexRay Systems
Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu
Abstract:
The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030311 Computational Approaches for Ballistic Impact Response of Stainless Steel 304
Authors: A. Mostafa
Abstract:
This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.
Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664310 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744309 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93308 Analysis of Rail Ends under Wheel Contact Loading
Authors: Nannan Zong, Manicka Dhanasekar
Abstract:
The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation materialKeywords: Rail end, material interface, wheel-rail contact, stress, finite element method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428307 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.
Keywords: Crack-tip deformations, static loading, stress concentration, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893306 A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Bae-Ho Lee, Ji-Sung Lee
Abstract:
There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobileand active monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589305 Structural Analysis of Stiffened FGM Thick Walled Cylinders by Application of a New Cylindrical Super Element
Authors: S. A. Moeini, M. T.Ahmadian
Abstract:
Structural behavior of ring stiffened thick walled cylinders made of functionally graded materials (FGMs) is investigated in this paper. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGM formation of the cylinder is modeled by power-law exponent and the variation of characteristics is supposed to be in radial direction. A finite element formulation is derived for the analysis. According to the property variation of the constituent materials in the radial direction of the wall, it is not convenient to use conventional elements to model and analyze the structure of the stiffened FGM cylinders. In this paper a new cylindrical super-element is used to model the finite element formulation and analyze the static and modal behavior of stiffened FGM thick walled cylinders. By using this super-element the number of elements, which are needed for modeling, will reduce significantly and the process time is less in comparison with conventional finite element formulations. Results for static and modal analysis are evaluated and verified by comparison to finite element formulation with conventional elements. Comparison indicates a good conformity between results.Keywords: FGMs, Modal analysis, Static analysis, Stiffened cylinders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319304 Risk Evaluation of Information Technology Projects Based on Fuzzy Analytic Hierarchal Process
Authors: H. Iranmanesh, S. Nazari Shirkouhi, M. R. Skandari
Abstract:
Information Technology (IT) projects are always accompanied by various risks and because of high rate of failure in such projects, managing risks in order to neutralize or at least decrease their effects on the success of the project is strongly essential. In this paper, fuzzy analytical hierarchy process (FAHP) is exploited as a means of risk evaluation methodology to prioritize and organize risk factors faced in IT projects. A real case of IT projects, a project of design and implementation of an integrated information system in a vehicle producing company in Iran is studied. Related risk factors are identified and then expert qualitative judgments about these factors are acquired. Translating these judgments to fuzzy numbers and using them as an input to FAHP, risk factors are then ranked and prioritized by FAHP in order to make project managers aware of more important risks and enable them to adopt suitable measures to deal with these highly devastative risks.Keywords: Information technology projects, Risk evaluation, Analytic hierarchal process, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942303 Retrofitting of Beam-Column Joint Using CFRP and Steel Plate
Authors: N. H. Hamid, N. D. Hadi, K. D. Ghani
Abstract:
This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.
Keywords: Beam-Column joint, ductility, stiffness, retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5984302 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip
Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini
Abstract:
Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.
Keywords: Adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836301 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground
Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane
Abstract:
Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.Keywords: Reliability approach, storage tanks, Monte Carlo simulation, seismic acceleration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489300 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability
Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim
Abstract:
Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.Keywords: Fast vs slow BTI, Fast wafer level reliability, Negative bias temperature instability, NBTI measurement system, metal-oxide-semiconductor field-effect transistor, MOSFET, NBTI recovery, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666299 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo
Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko
Abstract:
Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.
Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775298 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach
Authors: S.H. Mirtalaie, M.A. Hajabasi
Abstract:
In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.
Keywords: Free vibration, laminated composite beam, material coupling, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290297 Performance Analysis of Cluster Based Dual Tired Network Model with INTK Security Scheme in a Wireless Sensor Network
Authors: D. Satish Kumar, S. Karthik
Abstract:
A dual tiered network model is designed to overcome the problem of energy alert and fault tolerance. This model minimizes the delay time and overcome failure of links. Performance analysis of the dual tiered network model is studied in this paper where the CA and LS schemes are compared with DEO optimal. We then evaluate the Integrated Network Topological Control and Key Management (INTK) Schemes, which was proposed to add security features of the wireless sensor networks. Clustering efficiency, level of protections, the time complexity is some of the parameters of INTK scheme that were analyzed. We then evaluate the Cluster based Energy Competent n-coverage scheme (CEC n-coverage scheme) to ensure area coverage for wireless sensor networks.
Keywords: CEC n-coverage scheme, Clustering efficiency, Dual tired network, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673