Search results for: artificial intelligence-based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2675

Search results for: artificial intelligence-based optimization

1805 Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant

Authors: T. Hussein

Abstract:

The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The objective is to damp the local and inter-area modes of oscillations that occur following power system disturbances. The retuned power system stabilizer (PSS1A) can cope with large disturbance at different operating points and has enhanced power system stability.

Keywords: Static excitation system, particle swarm optimization (PSO), power system stabilizer (PSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
1804 Optimization of Molasses Desugarization Process Using Steffen Method in Sugar Beet Factories

Authors: Simin Asadollahi, Mohammad Hossein Haddad Khodaparast

Abstract:

Molasses is one of the most important by-products in sugar industry, which contains a large amount of sucrose. The routine way to separate the sucrose from molasses is using steffen method. Whereas this method is very usual in sugar factories, the aim of this research is optimization of this method. Mentioned optimization depends to three factors of reactor alkality, reactor temperature and diluted molasses brix. Accordingly, three different stages must be done:

  1. Construction of a pilot plant similar to actual steffen system in sugar factories
  2. Experimenting using the pilot plant
  3. Laboratory analysis

These experiences included 27 treatments in three replications. In each replication, brix, polarization and purity characters in Saccharate syrup and hot and cold waste were measured. The results showed that diluted molasses brix, reactor alkality and reactor temperature had many significant effects on Saccharate purity and efficiency of molasses desugarization. This research was performed in "randomize complete design" form & was analyzed with "duncan multiple range test". The significant difference in the level of α = 5% is observed between the treatments. The results indicated that the optimal conditions for molasses desugarization by steffen method are: diluted molasses brix= 10, reactor alkality= 10 and reactor temperature=8˚C. 

Keywords: Molasses desugarization, Saccharate purity, Steffen process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
1803 Conversion of HVAC Lines into HVDC in Transmission Expansion Planning

Authors: Juan P. Novoa, Mario A. Rios

Abstract:

This paper presents a transmission planning methodology that considers the conversion of HVAC transmission lines to HVDC as an alternative of expansion of power systems, as a consequence of restrictions for the construction of new lines. The transmission expansion planning problem formulates an optimization problem that minimizes the total cost that includes the investment cost to convert lines from HVAC to HVDC and possible required reinforcements of the power system prior to the conversion. The costs analysis assesses the impact of the conversion on the reliability because transmission lines are out of service during the conversion work. The presented methodology is applied to a test system considering a planning a horizon of 10 years.

Keywords: Cost optimization, energy non supplied, HVAC, HVDC, transmission expansion planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1802 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Authors: Jan Busch, Peter Nyhuis

Abstract:

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity, and the required nozzle pressure is presented.

Keywords: Aerodynamic feeding system, genetic algorithm, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
1801 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter

Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal

Abstract:

A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.

Keywords: Diameter, Electrospinning, GA, Nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
1800 Apoptosis Inspired Intrusion Detection System

Authors: R. Sridevi, G. Jagajothi

Abstract:

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
1799 Optimization of Extraction of Phenolic Compounds from Avicennia marina (Forssk.)Vierh using Response Surface Methodology

Authors: V.Bharathi, Jamila Patterson, R.Rajendiran

Abstract:

Optimization of extraction of phenolic compounds from Avicennia marina using response surface methodology was carried out during the present study. Five levels, three factors rotatable design (CCRD) was utilized to examine the optimum combination of extraction variables based on the TPC of Avicennia marina leaves. The best combination of response function was 78.41 °C, drying temperature; 26.18°C; extraction temperature and 36.53 minutes of extraction time. However, the procedure can be promptly extended to the study of several others pharmaceutical processes like purification of bioactive substances, drying of extracts and development of the pharmaceutical dosage forms for the benefit of consumers.

Keywords: Avicennia marina, Central Composite RotatableDesign (CCRD), Response Surface Methodology, Total Phenoliccontents (TPC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1798 Increasing Performance of Autopilot Guided Small Unmanned Helicopter

Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya

Abstract:

In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.

Keywords: Small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
1797 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
1796 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1795 Cryogenic Freezing Process Optimization Based On Desirability Function on the Path of Steepest Ascent

Authors: R. Uporn, P. Luangpaiboon

Abstract:

This paper presents a comparative study of statistical methods for the multi-response surface optimization of a cryogenic freezing process. Taguchi design and analysis and steepest ascent methods based on the desirability function were conducted to ascertain the influential factors of a cryogenic freezing process and their optimal levels. The more preferable levels of the set point, exhaust fan speed, retention time and flow direction are set at -90oC, 20 Hz, 18 minutes and Counter Current, respectively. The overall desirability level is 0.7044.

Keywords: Cryogenic Freezing Process, Taguchi Design and Analysis, Response Surface Method, Steepest Ascent Method and Desirability Function Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1794 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1793 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
1792 The Optimization of Engine Mounting Parts Using Hot-Cold Forging Technology

Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim

Abstract:

The purpose of this study is to develop a forging process of automotive parts that satisfies the deformation characteristics. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the commercial finite element analysis code was used to simulate the forging procedure of engine mounting parts. Experimental results were compared with the simulation results by finite element analysis. Test results were in good agreement with the simulations.

Keywords: Cold forging, hot forging, engine mounting, automotive parts, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1791 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization

Authors: M. F. Zaiyadi, B. Baharudin

Abstract:

Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.

Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
1790 The Energy Impacts of Using Top-Light Daylighting Systems for Academic Buildings in Tropical Climate

Authors: M. S. Alrubaih, M. F. M. Zain, N. L. N. Ibrahim, M.A. Alghoul, K. I. Ben Sauod

Abstract:

Careful design and selection of daylighting systems can greatly help in reducing not only artificial lighting use, but also decrease cooling energy consumption and, therefore, potential for downsizing air-conditioning systems. This paper aims to evaluate the energy performance of two types of top-light daylighting systems due to the integration of daylight together with artificial lighting in an existing examinaton hall in University Kebangsaan Malaysia, based on a hot and humid climate. Computer simulation models have been created for building case study (base case) and the two types of toplight daylighting designs for building energy performance evaluation using the VisualDOE 4.0 building energy simulation program. The finding revealed that daylighting through top-light systems is a very beneficial design strategy in reducing annual lighting energy consumption and the overall total annual energy consumption.

Keywords: Academic buildings, Daylighting, Top-lighting, Energy savings, Tropical Climate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1789 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
1788 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das

Abstract:

Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.

Keywords: offline, algorithm, FAR, FRR, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1787 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: W. Wongthatsanekorn, N. Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915
1786 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3145
1785 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
1784 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3562
1783 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
1782 Study on Leakage Current Waveforms of Porcelain Insulator due to Various Artificial Pollutants

Authors: Waluyo, Parouli M. Pakpahan, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of leakage current waveforms which appears on porcelain insulator surface due to existence of artificial pollutants. The tests have been done using the chemical compounds of NaCl, Na2SiO3, H2SO4, CaO, Na2SO4, KCl, Al2SO4, MgSO4, FeCl3, and TiO2. The insulator surface was coated with those compounds and dried. Then, it was tested in the chamber where the high voltage was applied. Using correspondence analysis, the result indicated that the fundamental harmonic of leakage current was very close to the applied voltage and third harmonic leakage current was close to the yielded leakage current amplitude. The first harmonic power was correlated to first harmonic amplitude of leakage current, and third harmonic power was close to third harmonic one. The chemical compounds of H2SO4 and Na2SiO3 affected to the power factor of around 70%. Both are the most conductive, due to the power factor drastically increase among the chemical compounds.

Keywords: Chemical compound, harmonic, porcelain insulator, leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1781 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network

Authors: A. Raminfard, S. M. Shahrtash

Abstract:

In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.

Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3426
1780 Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

Authors: Paki Turgut, Mehmet Gumuscu

Abstract:

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Keywords: Limestone dust, masonry brick, thermo-elastic properties, wood sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
1779 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1778 Language Policy as an Instrument for Nation Building and Minority Representation: Supporting Cases from South Asia

Authors: Kevin You

Abstract:

Nation-building has been a key consideration in ethno-linguistically diverse post-colonial ‘artificial states’, where ethnic tensions, religious differences and the risk of persecution of minorities are common. Language policy can help with nation-building, but it can also hinder the process. An important challenge is in recognising which language policy to adopt. This article proposes that the designation of a widely used lingua franca as a national language (in an official capacity or otherwise) - in a culturally, ethnically and linguistically diverse post-colonial state - assists its nation-building efforts in the long run. To demonstrate, this paper looks at the cases of Sri Lanka, Indonesia and India: three young nations which together emerged out of the Second World War with comparable colonial experiences, but subsequently adopted different language policies to different effects. Insights presented underscore the significance of inclusive language policy in sustainable nation-building in states with comparable post-colonial experiences.

Keywords: Language policy, South Asia, nation building, Artificial states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
1777 Adaptive WiFi Fingerprinting for Location Approximation

Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan

Abstract:

WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.

Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3464
1776 Urban Planning Formulation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hypercycle Theory

Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang

Abstract:

Systematic Science reveals the complex nonlinear mechanisms of behavior in urban system. However, when confronted with such system, most city planners in China are still utilizing simple linear thinking to learn and understand this open complex giant system. In this paper, the hypercycle theory was introduced, which is one of the basis theories of systematic science. Based on the analysis of the reasons for the failure of current urban planning in China, and in consideration of the nonlinear characteristics of the urban system as well, optimization ideas for urban planning formulation were presented such as the shift from blueprint planning to progressive planning and from the rigid urban planning management control to its dynamically monitor and in time feedback.

Keywords: Systematic science, hypercycle theory, urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363