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Abstract—Artificial Neural Network (ANN) can be trained using
back propagation (BP). It is the most widely used algorithm for
supervised learning with multi-layered feed-forward networks.
Efficient learning by the BP algorithm is required for many practical
applications. The BP algorithm calculates the weight changes of
artificial neural networks, and a common approach is to use a two-
term algorithm consisting of a learning rate (LR) and a momentum
factor (MF). The major drawbacks of the two-term BP learning
algorithm are the problems of local minima and slow convergence
speeds, which limit the scope for real-time applications. Recently the
addition of an extra term, called a proportional factor (PF), to the
two-term BP algorithm was proposed. The third increases the speed
of the BP algorithm. However, the PF term also reduces the
convergence of the BP algorithm, and criteria for evaluating
convergence are required to facilitate the application of the three
terms BP algorithm. Although these two seem to be closely related,
as described later, we summarize various improvements to overcome
the drawbacks. Here we compare the different methods of
convergence of the new three-term BP algorithm.

Keywords—Neural Network, Backpropagation, Local Minima,
Fast Convergence Rate.

I. INTRODUCTION

RTIFICIAL Neural Network (ANN) is a model of
reasoning based on the human brain with similar abilities

such as associative and abstract thinking can only be achieved
if it is based on architecture and working method which is
similar to human brain; similar to human brain, neural
network consists of a number of simple highly interconnected
processors known as neurons, which are analogous to the
biological neural cells of the brain. These neurons are
connected by a large number of links, called weighted links.
Learning is a fundamental and essential characteristic of ANN.
It is capable of learning through the network experiences to
improve their performance.

When ANN is exposed to a sufficient number of samples, it
can generalize well to other data that they have not yet
encountered. There are many algorithms to train ANN. BP is
currently the most frequently and widely applied in ANN
Architecture. BP has a colorful history. It was originally
introduce by Bryson and Ho in 1969 [1] and then
independently by Werbos in 1974 [2], by Parker in the 1980’s
[3]-[5] and by Rumelhart, Hinton and Williams in 1986 [6].

Generally, ANN can be trained using BP developed by
Studies have shown that BP has been proven to be very
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successful in many diverse applications. ANN training usually
carried out by iterative updating of weights based on the error
signal. The negative gradient of a mean-squared error function
is commonly used. In the output layer, the error signal is the
difference between the desired and actual output values,
multiplied by the slope of a sigmoidal activation function.
Then the error signal is back propagated to the lower layers.
BP is a descent algorithm, which attempts to minimize the
error at each iteration. The algorithm adjusts the weights of the
network such that the error is decreased along a descent
direction. Traditionally, two parameters, called learning rate
(LR) and momentum factor (MF), are used for controlling the
weight adjustment along the descent direction and for
dampening oscillations.

The BP algorithm is central to most recent work on learning
in ANN. This algorithm is purely based on error correction
learning technique. The very general nature of the BP training
method means that a BP can be used to solve problem in many
areas. In spite of these important properties, a major criticism
is commonly moved against BP algorithm, like such as
classification and function approximation, it often suffer from
the local minima problem. And second one is its convergence
rate is relatively slow, especially for networks with more than
one hidden layer. To overcome this problem of local minima
various methods have been proposed, such as Adaptive
Learning Rate, Levenberg-Marquardt algorithm. The
minimum for which the value of the error function is smallest
is called global minimum, while other minima are called local
minima. We have noted that many local minima difficulties
are closely related to the neuron saturation in the hidden layer.
Once such saturation occurs, neurons in the hidden layer will
lose their sensitivity to input signals, and the propagation of
information is blocked severely. In some cases, the network
can no longer learn. The same phenomenon is also observed
and discussed by Andreas Hadjiprocopis [7], Christian
Goerick [8] and Simon Haykin [9].

Furthermore, methods have been proposed which embed
chaotic dynamics into the neural network. Nozawa [10]
showed the existence of chaos in Euler approximation of the
Hopfield network [11] by adding a negative self-feedback
connection. Chaotic simulated annealing (CSA) is proposed
by Chen and Aihara [12] and uses a sufficiently large negative
self-feedback to a Hopfield neural network and gradually
reduces the self- feedback. Wang and Smith [13] suggested
reducing the time step rather than the self-feedback in CSA. In
[14], Wang et al. proposed stochastic chaotic simulated
annealing, by adding a stochastic noise into CSA.

In the case of convergence speed, the reason for this is the
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saturation behavior of the activation functi
hidden and output layers. Since the output o
the saturation area, the corresponding descen
very small value, even if the output error is 
very little progress in the weight adjustment.
the LR and MF is arbitrary, because the erro
consists of many flat and steep regions and be
from application to application. Large value
MF are helpful to accelerate learning. Howev
the possibility of the weight search jumping o
and moving out of the desired regions.

This paper presents a study of drawbacks
and slow convergence rate. And we discus
various approaches to overcome these drawb
the following main contributions: Section II
basic fundamental of BP. In Section III, we d
minima problem. Section IV describes the fas
BP. In section V we give the performance ev
conclude in last section.

II.THEORY OF BACK-PROPAGAT

The back-propagation learning a
multiplicative neural networks (MNN) has to 
as both single-units and also in networks. The
is to update the network weights iterativ
globally the difference between the actual ou
network and the desired output vector. The ra
of such a global minimum is a rather diffic
general, the number of network variables 
corresponding non-convex multimodal ob
possesses multitudes of local minima and
regions adjoined with narrow steep ones. Th
block of the MNN is a single neuron or nod
Fig. 1 [15].

Fig. 1 Node Structure of MNN
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where, is the learning rate and is the 
is large, learning occurs quickly, but if it i

lead to instability and errors may even increas
The bias is updated as

	 � � � � � � ��� � ��� �

The standard BP algorithm calculates the 
biases as

� � 


� � 


Adding the momentum term and PF term
the standard algorithm. The momentum term
the previous weight change. The momentu
extreme changes in the gradient due to
suppresses oscillations due to variations in 
error surface [19] and prevents the network to
local minima. The convergence still remain
because of the saturation behavior of the act
In the saturation area of the output activati
corresponding gradient descent takes very sm
to small changes in weight adjustments. 
proportional to the difference between the
target solves the problem of slow convergenc
BP weight update is calculated as


 � 
 � 
 � �


 � 
 � 
 � �

is the proportional term

 is the previous weight change

is the proportional term
� � � is the difference between the output

each iteration

 is the previous bias change.

III. IMPROVEMENT IN LOCAL MIN

In this section we discuss the weight evo
for solving the local minimum problem of b
by changing the weights of a multi-layer neu
deterministic way. During the learning 
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the adaptive learning of multi-layer
A local minimum is a suboptimal e
system error is non-zero and the 
singular [20]. Any local minima has
that if a descent path starts at any 
will converge to the local minima in
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Now the output of the k-th node in the hidden layer is given
by:

� � �� � (10)

where f is the sigmoidal function defined as

� � �
� �

(11)

Similarly, the output of the m-th node in the output layer
and the sun1 of squared error of the system are:

� � �� �� � (12)

 � � � �
2 (13)

To have a reduction in system error, we select an output
node with the worst output to perturb deterministically.
Consider a particular output neuron m*, where 1� � � Mat
the output layer for which the output error is above the mean
squared error value.

A number of experiments have been conducted on three
different problems including the XOR problem, the 3-bit
parity and the 5-bit counting problem to illustrate the
performance of the weight evolution using deterministic
perturbation as compared with other fast algorithms such as
Quickprop [23] and RPROP [24]. For these problems, the
input and the target patterns consist of 0’s and l’s, and the
learning algorithms terminate when the system errors reach
10-3 within 30000 iterations. The initial weights are drawn at
random from uniform distribution between -0.3 and 0.3.

Each experiment is performed 30 times for 30 different sets
of initial weights on various learning algorithms, including
standard back-propagation (BP) [25], Quickprop, RPROP and
our new algorithm. Experimental results show that our new
algorithm gives very promising results in terms of giving fast
learning speed and global search capability as compared with
other learning algorithms. From Table I, “Conv” means the
average number of iterations for the algorithm to converge to
system error less than the percentage of global convergence
(“% of conv”) is to count the number of successful runs (over
30 different runs), which can converge to system error of less
than 10-3.

A. The XOR Problem
The network architecture for training the XOR problem is

(2-2-1), it consists of 2 input nodes, 2 hidden nodes and 1
output node. The learning rate and momentum are assigned as
0.5 and 0.7 respectively. It can be shown from Table I that the
weight evolution algorithm can always converge to global
minimum with a reasonable fast manner, while other fast
algorithms such as Quickprop and RPROP cannot give 100%
global convergence.

B. The XOR Problem
For the 3-bit parity problem, the network architecture is (3-

3-l); it consists of three input nodes, three hidden nodes and

one output node. The output denotes the odd parity of the
three inputs, that is, the output will become ‘1’ when there is
an odd number of 1’s in the input pattern. The learning rate
and momentum are chosen as 0.3 and 0.7 respectively. From
Table I, it is clearly reflected that the traditional learning
algorithms cannot always converge while our proposed one is
100% guarantee.

C.The XOR Problem
The counting problem described in [26]is particular useful

to illustrate the learning of back-propagation always being
trapped in local minima since there are many different local
minima occurred at different error levels. The network
contains 5 input units, 12 hidden units and 6 output units. Each
output node corresponds to the number of 1’s in the input
vectors. Here the learning rate and momentum are set
respectively at 0.1 and 0.7. In Table I, it is shown that our
proposed one is 100% global convergence; it has a great
improvement over the original back-propagation and RPROP
which give only 0% global convergence. The latter two
algorithms cannot converge to global minimum within 30000
iterations.

IV. FAST CONVERGENCE RATE FOR BP ALGORITHM

Despite the learning the neural networks, several major
deficiencies are still needed to be resolved. Firstly, the original
back-propagation algorithm (BP) will get trapped in local
minima especially for non-linearly separable problems [27]
such as the XOR problem [28]. Having trapped into local
minima, BP may lead to failure in finding a global optimal
solution. Secondly, the convergence rate of BP is still too slow
even if learning can be achieved. Furthermore, the
convergence behavior of the back-propagation algorithm
depends very much on the choices of initial values of
connection weights and the parameters in the algorithm such
as the learning rate and the momentum.

The main reason for the slow convergence of BP is due to
the derivative of the activation function, which will lead to the
occurrence of premature saturation [29] of the network output
units. When the actual output opm (where opm is the actual
output of the m output neuron for the p-th pattern) is
approaching to either extreme values of the sigmoidal
function, that is either 0 or 1, the derivative of the activation
function having the factor opm(1-opm) will become extremely
small, and the hack propagated error signal may vanish.
Therefore, the output can be maximally wrong without
producing a large error signal. The algorithm may then bc
trapped into “flat spot”. Consequently, the learning process
and weight adjustment of the algorithm will be very slow or
even suppressed. BP usually requires tens to thousands
iterations to leave the flat spots, this causes the slow
convergence of the algorithm.

Different approaches had been suggested to eliminate the
flat spot problem so as to accelerate the convergence speed of
BP [30]. Among all these methods, there are basically two
approaches in solving the premature saturation (or flat spot)
problem. They are the modification on either the definition of
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system error E, or the slope of the activation function in the
weight update equation. Although many methods had been
developed to solve the premature saturation of BP, these
methods did not obtain very significant improvement in both
the convergence speed and global convergence capability over
the standard back- propagation algorithm.

In the proposed a modification on the derivative of the
activation function so as to improve the convergence of the
learning process by preventing the error signal drop to a very
small value. The idea is to magnify the derivative term opm(l-
opm),especially when the value of Opm approaches 0 or 1, by
using a power factor. In that case, the derivative of the
activation function will not be too small and the convergence
of the algorithm can he improved. The new algorithm is
shown to have the characteristics of faster convergence rate
and greater chance to escape from flat spots as compared with
BP.

To test the effectiveness of our new algorithm, its
performance is compared with BP and other algorithms on
some standard benchmark problems. A number of experiments
have been conducted on different problems including the
XOR, 3-bit parity, 5-bit counting problem, the regression
problem and the character recognition problem to illustrate the
performance of the MGFPROP algorithm. Let (N, K, M) be a
network configuration with N input nodes, K hidden nodes and
M output nodes respectively; then the network configuration
of the above problems are (2-2-l), (3-2-l), (5,12,6), (l,6,l) and
(64,20,26) respectively. Their learning rates are set as 0.5, 0.3,
0.1, 0.4 and 0.05 respectively. The momentum factor of all
three problems is 0.7. For the XOR problem, the output should
be unity only when the two inputs are different. For the 3-bit
parity problem, the outputs will he set to unity when the three
inputs produce an odd parity. The 5-bit counting problem,
which counts the number of 1’s from 5 input units, contains
many local minima and thus it is a standard experiment to
illustrate the performance of a learning algorithm to avoid
trapping in local minima [31].

V.PERFORMANCE EVALUATION

The performance evaluations are as follow:
In Table I we evaluate performance for Local minima and

in Table II we can see the performance evaluation for faster
convergence.

TABLE I
PERFORMANCE EVALUATION FOR LOCAL MINIMA PROBLEM

LEARNING
ALGORITHM

XOR 3-BIT PARITY 5-BIT PARITY
conv % of

conv
conv % of

conv
conv % of

conv
Quick-prop 62.9 56.7% 98.2 93.3% 487.1 66.6%

RPROP 68.0 46.7% 148.3 76.6% >30000 0%
BP 2376.0 100% 616.6 100% >30000 0%

Proposed
Method

83.4 100% 198.6 100% 1385.6 100%

TABLE II
PERFORMANCE EVALUATION FOR FAST CONVERGENCE RATE

Test Case 5-Bit Counting Regression Character
Recognition

Algorithm Converg
ence rate

% of
global

Converg
ence

Converg
ence
rate

% of
global
Conver
gence

Converge
nce rate

% of
global
Conver
gence

BP FAIL 0 4111.6 46.7 121.1 100
Quick-prop 487.1 66.7 3621.7 76.6 57.0 3.3

RPROP FAIL 0 2605.5 0 61.0 3.3
SARPROP 275.3 100 1293.6 96.7 54.9 100

MGFPROP 245.9
(S=5) 100 510.2

(S=6) 100 29.5
(S=3) 100

VI. CONCLUSION

We have studied an improved learning method for
multilayer feed forward neural networks. In this method, each
training pattern has its own activation functions of neurons in
the hidden layer. The activation functions are adjusted by the
adaptation of gain parameters during the learning process.
These adjustments are made in order to prevent the network
from trapping in to a local minimum caused by the neuron
saturation in the hidden layer. When the network starts to
approximate to the teacher signals, the gain parameters of all
patterns will be adapted back to their original values. Finally,
our proposed method has been indicated to be very effective in
avoiding the local minima by testing it and comparing the
results with those of the back propagation algorithm and the
simulated annealing method on several benchmark problems.
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