Search results for: V.Bharathi
4 Optimization of Extraction of Phenolic Compounds from Avicennia marina (Forssk.)Vierh using Response Surface Methodology
Authors: V.Bharathi, Jamila Patterson, R.Rajendiran
Abstract:
Optimization of extraction of phenolic compounds from Avicennia marina using response surface methodology was carried out during the present study. Five levels, three factors rotatable design (CCRD) was utilized to examine the optimum combination of extraction variables based on the TPC of Avicennia marina leaves. The best combination of response function was 78.41 °C, drying temperature; 26.18°C; extraction temperature and 36.53 minutes of extraction time. However, the procedure can be promptly extended to the study of several others pharmaceutical processes like purification of bioactive substances, drying of extracts and development of the pharmaceutical dosage forms for the benefit of consumers.Keywords: Avicennia marina, Central Composite RotatableDesign (CCRD), Response Surface Methodology, Total Phenoliccontents (TPC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20663 ATM Service Analysis Using Predictive Data Mining
Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan
Abstract:
The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.
Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56132 Qmulus – A Cloud Driven GPS Based Tracking System for Real-Time Traffic Routing
Authors: Niyati Parameswaran, Bharathi Muthu, Madiajagan Muthaiyan
Abstract:
This paper presents Qmulus- a Cloud Based GPS Model. Qmulus is designed to compute the best possible route which would lead the driver to the specified destination in the shortest time while taking into account real-time constraints. Intelligence incorporated to Qmulus-s design makes it capable of generating and assigning priorities to a list of optimal routes through customizable dynamic updates. The goal of this design is to minimize travel and cost overheads, maintain reliability and consistency, and implement scalability and flexibility. The model proposed focuses on reducing the bridge between a Client Application and a Cloud service so as to render seamless operations. Qmulus-s system model is closely integrated and its concept has the potential to be extended into several other integrated applications making it capable of adapting to different media and resources.Keywords: Cloud Services, GPS, Real-Time Constraints, Shortest Path, System Management and Traffic Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics
Authors: Bharathi P. T, P. Subashini
Abstract:
Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.
Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909