Search results for: Voltage swells
54 Efficiency Enhancement of PWM Controlled Water Electrolysis Cells
Authors: S.K. Mazloomi, Nasri b. Sulaiman
Abstract:
By analyzing the sources of energy and power loss in PWM (Pulse Width Modulation) controlled drivers of water electrolysis cells, it is possible to reduce the power dissipation and enhance the efficiency of such hydrogen production units. A PWM controlled power driver is based on a semiconductor switching element where its power dissipation might be a remarkable fraction of the total power demand of an electrolysis system. Power dissipation in a semiconductor switching element is related to many different parameters which could be fitted into two main categories: switching losses and conduction losses. Conduction losses are directly related to the built, structure and capabilities of a switching device itself and indeed the conditions in which the element is handling the switching application such as voltage, current, temperature and of course the fabrication technology. On the other hand, switching losses have some other influencing variables other than the mentioned such as control system, switching method and power electronics circuitry of the PWM power driver. By analyzings the characteristics of recently developed power switching transistors from different families of Bipolar Junction Transistors (BJT), Metal Oxide Semiconductor Field Effect Transistors (MOSFET) and Insulated Gate Bipolar Transistors (IGBT), some recommendations are made in this paper which are able to lead to achieve higher hydrogen production efficiency by utilizing PWM controlled water electrolysis cells.Keywords: Power switch, PWM, Semiconductor switch, Waterelectrolysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347753 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381252 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator
Authors: Jagadish H. Pujar, S. F. Kodad
Abstract:
Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249851 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks
Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas
Abstract:
The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, Wind Energy Conversion Systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198450 Doping Profile Measurement and Characterization by Scanning Capacitance Microscope for PocketImplanted Nano Scale n-MOSFET
Authors: Muhibul Haque Bhuyan, Farseem Mannan Mohammedy, Quazi Deen Mohd Khosru
Abstract:
This paper presents the doping profile measurement and characterization technique for the pocket implanted nano scale n-MOSFET. Scanning capacitance microscopy and atomic force microscopy have been used to image the extent of lateral dopant diffusion in MOS structures. The data are capacitance vs. voltage measurements made on a nano scale device. The technique is nondestructive when imaging uncleaved samples. Experimental data from the published literature are presented here on actual, cleaved device structures which clearly indicate the two-dimensional dopant profile in terms of a spatially varying modulated capacitance signal. Firstorder deconvolution indicates the technique has much promise for the quantitative characterization of lateral dopant profiles. The pocket profile is modeled assuming the linear pocket profiles at the source and drain edges. From the model, the effective doping concentration is found to use in modeling and simulation results of the various parameters of the pocket implanted nano scale n-MOSFET. The potential of the technique to characterize important device related phenomena on a local scale is also discussed.Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Scanning Capacitance Microscope, Atomic Force Microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202949 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.
Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65848 Reduction of Power Losses in Distribution Systems
Authors: Y. Al-Mahroqi, I.A. Metwally, A. Al-Hinai, A. Al-Badi
Abstract:
Losses reduction initiatives in distribution systems have been activated due to the increasing cost of supplying electricity, the shortage in fuel with ever-increasing cost to produce more power, and the global warming concerns. These initiatives have been introduced to the utilities in shape of incentives and penalties. Recently, the electricity distribution companies in Oman have been incentivized to reduce the distribution technical and non-technical losses with an equal annual reduction rate for 6 years. In this paper, different techniques for losses reduction in Mazoon Electricity Company (MZEC) are addressed. In this company, high numbers of substation and feeders were found to be non-compliant with the Distribution System Security Standard (DSSS). Therefore, 33 projects have been suggested to bring non-complying 29 substations and 28 feeders to meet the planed criteria and to comply with the DSSS. The largest part of MZEC-s network (South Batinah region) was modeled by ETAP software package. The model has been extended to implement the proposed projects and to examine their effects on losses reduction. Simulation results have shown that the implementation of these projects leads to a significant improvement in voltage profile, and reduction in the active and the reactive power losses. Finally, the economical analysis has revealed that the implementation of the proposed projects in MZEC leads to an annual saving of about US$ 5 million.Keywords: Losses Reduction, Technical Losses, Non-Technical Losses, Cost Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937747 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions
Authors: Marcus Banda
Abstract:
In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205246 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement
Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin
Abstract:
An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.
Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320145 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama
Abstract:
Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.
Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240244 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves
Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel
Abstract:
Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.
Keywords: Anodic bonding, evaporated glass, microfluidic valve, drug delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86443 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311742 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells
Authors: Andrew Jester, Ross Lee, Pritpal Singh
Abstract:
As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.
Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40141 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.
Keywords: Transient process, synchronous motor, excitation mode, regulator, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69240 Highly Optimized Novel High Speed Low Power Barrel Shifter at 22nm Hi K Metal Gate Strained Si Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
This research paper presents highly optimized barrel shifter at 22nm Hi K metal gate strained Si technology node. This barrel shifter is having a unique combination of static and dynamic body bias which gives lowest power delay product. This power delay product is compared with the same circuit at same technology node with static forward biasing at ‘supply/2’ and also with normal reverse substrate biasing and still found to be the lowest. The power delay product of this barrel sifter is .39362X10-17J and is lowered by approximately 78% to reference proposed barrel shifter at 32nm bulk CMOS technology. Power delay product of barrel shifter at 22nm Hi K Metal gate technology with normal reverse substrate bias is 2.97186933X10-17J and can be compared with this design’s PDP of .39362X10-17J. This design uses both static and dynamic substrate biasing and also has approximately 96% lower power delay product compared to only forward body biased at half of supply voltage. The NMOS model used are predictive technology models of Arizona state university and the simulations to be carried out using HSPICE simulator.Keywords: Dynamic body biasing, highly optimized barrel shifter, PDP, Static body biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188539 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.
Abstract:
This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.
Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285038 Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp
Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz
Abstract:
Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.
Keywords: Brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56737 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy
Authors: Asma Perveen, M. P. Jahan
Abstract:
Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133736 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network
Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo
Abstract:
Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.
Keywords: Power quality, remote monitoring, distributed automation system, economic evaluation, LV network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114035 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor
Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi
Abstract:
Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.
Keywords: Dimensional Analysis, ISIS, Digital-noiseless, RC network, Attenuation, Phase Delay, Elmore model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145734 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201333 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87832 Ovshinsky Effect by Quantum Mechanics
Authors: Thomas V. Prevenslik
Abstract:
Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance.Keywords: Ovshinsky, phase change memory, PC-RAM, chalcogenide, quantummechanics, quantum electrodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169231 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.
Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54830 Microfluidic Manipulation for Biomedical and Biohealth Applications
Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj
Abstract:
Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.
Keywords: Microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9629 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.
Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management, measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171328 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.
Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69027 Improvement of Short Channel Effects in Cylindrical Strained Silicon Nanowire Transistor
Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour
Abstract:
In this paper we investigate the electrical characteristics of a new structure of gate all around strained silicon nanowire field effect transistors (FETs) with dual dielectrics by changing the radius (RSiGe) of silicon-germanium (SiGe) wire and gate dielectric. Indeed the effect of high-κ dielectric on Field Induced Barrier Lowering (FIBL) has been studied. Due to the higher electron mobility in tensile strained silicon, the n-type FETs with strained silicon channel have better drain current compare with the pure Si one. In this structure gate dielectric divided in two parts, we have used high-κ dielectric near the source and low-κ dielectric near the drain to reduce the short channel effects. By this structure short channel effects such as FIBL will be reduced indeed by increasing the RSiGe, ID-VD characteristics will be improved. The leakage current and transfer characteristics, the threshold-voltage (Vt), the drain induced barrier height lowering (DIBL), are estimated with respect to, gate bias (VG), RSiGe and different gate dielectrics. For short channel effects, such as DIBL, gate all around strained silicon nanowire FET have similar characteristics with the pure Si one while dual dielectrics can improve short channel effects in this structure.Keywords: SNWT (silicon nanowire transistor), Tensile Strain, high-κ dielectric, Field Induced Barrier Lowering (FIBL), cylindricalnano wire (CW), drain induced barrier lowering (DIBL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201026 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302125 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping
Authors: Chao Yi, Cunyue Lu, Lingwei Quan
Abstract:
Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.
Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725