%0 Journal Article
	%A Mihaela Popescu and  Alexandru Bitoleanu and  Mircea Dobriceanu
	%D 2010
	%J International Journal of Electronics and Communication Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 46, 2010
	%T On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
	%U https://publications.waset.org/pdf/1438
	%V 46
	%X The proper selection of the AC-side passive filter
interconnecting the voltage source converter to the power supply is
essential to obtain satisfactory performances of an active power filter
system. The use of the LCL-type filter has the advantage of
eliminating the high frequency switching harmonics in the current
injected into the power supply. This paper is mainly focused on
analyzing the influence of the interface filter parameters on the active
filtering performances. Some design aspects are pointed out. Thus,
the design of the AC interface filter starts from transfer functions by
imposing the filter performance which refers to the significant current
attenuation of the switching harmonics without affecting the
harmonics to be compensated. A Matlab/Simulink model of the entire
active filtering system including a concrete nonlinear load has been
developed to examine the system performances. It is shown that a
gamma LC filter could accomplish the attenuation requirement of the
current provided by converter. Moreover, the existence of an optimal
value of the grid-side inductance which minimizes the total harmonic
distortion factor of the power supply current is pointed out.
Nevertheless, a small converter-side inductance and a damping
resistance in series with the filter capacitance are absolutely needed
in order to keep the ripple and oscillations of the current at the
converter side within acceptable limits. The effect of change in the
LCL-filter parameters is evaluated. It is concluded that good active
filtering performances can be achieved with small values of the
capacitance and converter-side inductance.
	%P 1553 - 1558