Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474267

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600

References:


[1] H. N. Abramson, W. H. Chu, D.D. Kana “Some studies of nonlinear lateral sloshing in rigid containers” ASME J. App. Mech, vol. 33, Dec.1984, pp.777-784.
[2] J. W. Miles, “Resonantly forced surface waves in a circular cylinder” J. Fluid Mech, vol. 149, Dec.1984, pp.15-31.
[3] F. G. Dodge, D. D. Kana, H. N. Abramson, “Liquid surface oscillations in a longitudinal excited rigid cylindrical container” J. AIAA, vol.3, Apr. 1965, pp. 685-695.
[4] K. Senda, N. Nakagawa, “On the vibration of an elevated water tank” Tech. Rep. Osaks University, No.193, 1954, pp. 247-264.
[5] H. Hagiuda, “Oscillating control system exploiting fluid force generated by water sloshing,” Mitsui Zosen Tech. Rev, Issue.137, Jun.1989, pp. 13-20.
[6] Y. Fujino, B. Pachecco, C. Piyawat, K. Fujii, “An experimental study on tuned liquid damper using circular containers” J. JSCE, vol. 34, Oct.1988, pp. 603-616.
[7] T. Ikeda, N. Nakagawa, “Non-linear vibrations of a structure caused by water sloshing in a rectangular tank” J. Sound Vib, vol. 201, Mar. 1977, pp. 23-41.
[8] H. Minami, “Added mass of a membrane vibrating at finite amplitude” J. Fluids. Struct, vol.12, Oct.1998, pp. 919-932.
[9] R. T. Jones, “Properties of low-aspect ratio pointed wings at speeds below and above the speed of sound” NASA Tech Rep, 1954, No. 834.
[10] A. J. Pretlove, “Note on the virtual mass for a panel in an infinite baffle” J. Acoustic. Soc., vol. 38, Aug. Jul.2005, pp. 266-270.
[11] A. Kornecki, E. H. Dowell, J. Obrien, “On the aeroelastic instability of two-dimensional panels in uniform incompressible flow” J. Sound. Vib., vol. 43, Jul.1976 pp.163-178.
[12] A. D. Lucey, P. W. Carpenter, P. W, “The hydroelastic stability of three-dimensional disturbances of a finite compliant wall,” J. Sound. Vib, vol. 165, Aug.1993, pp.527-552.
[13] M. R. Maheri, R. T. Severn, “Experimental added- mass in modal vibration of cylindrical structures” J. Eng. Struct, vol. 14, Dec.1992, pp.163-175.
[14] L. Huang, “Flutter of cantilevered plates in axial flow” J. Fluids. Struct, vol. 9, Feb.1995, pp. 127-147.
[15] JK. Sinha, S. Sandeep, “Added mass and damping of submerged perforated plates” J. Sound. Vib, vol. 260, Feb.2003, pp. 549-564.
[16] M. Boa, W. Wang, W. “Future of micromechanical systems (MEMS)” J. Sens. Actuators., vol.56, Aug. 1996, pp.135-141.
[17] JM. Sallese, W. Grabinski, V. Meyer, C. Bassin, P. Fazan, “Electrical modeling of a pressure sensor MOSFET” J. Sens. Actuators, vol. 94, Oct.2001, pp.53–58.
[18] MTA. Saif, BE. Alaca, H. Sehitoglu, H, “Analytical modeling of electrostatic membrane actuator for micro pumps” JMEMS, vol.8, Sep.1999, pp.335–345.
[19] G. Rezazadeh, M. Ghanbari, I. Mirzaee, A. Keyvani, “On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density” Measurement, vol.43, Dec.2010, pp. 1516-1524.
[20] CY. Wang, “The squeezing of a fluid between two plates” ASME J. Appl. Mech, vol.43, Dec. 1976, pp. 579-582.
[21] H. Hashimoto, “Viscoelastic squeeze film characteristics with inertia effects between two parallel circular plates under sinusoidal motion” ASME J. Tribol, vol. 116, Jan. 1994, pp. 110-117.
[22] M. Ghanbari, S. Hossainpour, G. Rezazadeh “Study of squeeze-film damping in a micro-beam resonator based on micropolar theory” LAJSS. Vol.12, Oct.2014, pp. 77-91.
[23] G. Rezazadeh, M. Fathalilou, R. Shabani, S. Tarverdilou, “Dynamic characteristics and forced response of an electristatically- actuated micro-beam subjected to fluid loading” J. Microsyst. Technol, vol.15, Jul.2009, pp. 1355-1363.
[24] A. K. Pandey, R. Pratap, “Effect of flexural modes on squeeze film damping in MEMS cantilever resonators” J. Micromech. Microeng, vol. 17, Nov. 2007, pp. 2475-2484.
[25] M. I. Younis, A. H. Nayfeh, “Simulation of squeeze-film damping of microplates actuated by large electrostatic load” ASME. J. Comput. Nonlinear Dynam. Vol.2, Jan. 2007, pp. 101-112.
[26] S. Chatrejee, G. Pohit, “A large deflection model for the pull-in analysis of electrostatically actuated micro cantilever beams” J. Sound and Vib, vol. 322, May. 2009, PP. 969-986.
[27] S. Chatrejee, G. Pohit, G, “Squeeze- film characteristics of cantilever micro-resonators for higher modes of flexural vibration” Int. J. Eng. Sci and Technol, vol. 2, Sep.2010, pp. 187-199.
[28] A. C. Eringen, “Theory of micro-polar fluids” J. Math. Mech, vol. 16, Jul.1965, pp.1-18.
[29] A. C. Eringen, “Theory of thermo micro-polar fluids” J. Math anal. Appl, vol.38, May.1972, pp. 480-496.
[30] A. Kucaba-Pietal, “Applicability of the micropolar fluid theory in solving microfluidics problems” in Proc. 1th Annu. European Conference on Microfluidics, Bologna, 2008.
[31] A. Kucaba-Pietal, “Micro channels flow modelling with the micropolar fluid theory” Bull. Pol. Acad. Sci, vol.52, Dec.2004, pp. 209-213.
[32] J. Chen, C. Liang, J. D. Lee, 2011, “Theory and simulation of micropolar fluid dynamics” J. Nanoeng. Nanosyst, vol. 224, Jan.2011, pp. 31-39.
[33] A. Yavari, S. Sarkani, E. T. Moyer, “On fractural cracks in micro-polar elastic solids” ASME J. Appl.Mec, vol. 69, Jan.2002, pp. 45-54.
[34] G. Rezazadeh, A. Tahmasebi, 2006, “Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage” J. Microsyst. Techno, vol. 12, Aug.2006, pp. 1163-1170.
[35] E. Crawley, J. Luis, “Use of piezoelectric actuators as elements of intelligent structures” J. AIAA, vol. 25, Nov.1987, pp. 1373–1385.
[36] T. Sree Lakshmi, A. Chandulal, K. Sambaiah, “Reflection and transmission of P- Waves at an interface of two micro-polar solid half-spaces” Int. J. Pure Appl. Sci. Technol, vol. 2, Feb.2011, pp. 19-28.
[37] G. Ahmadi, “Self-similar solution of incompressible micro-polar boundary layer flow over a semi-infinite plate” Int. J. Eng. Sci, vol. 14, Dec. 1976, pp.639-646.
[38] F. S. Tse, I. E. Morse, R. T. Hinkle, R. T, Mechanical Vibrations: Theory and Applications, Boston, 2004, Ch.7.