Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30069
Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Authors: Jagadish H. Pujar, S. F. Kodad

Abstract:

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1071408

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF

References:


[1] S. Benaicha, R. Nait-Said, F. Zidani, M-S. Nait-Said, B. Abdelhadi, "A direct torque fuzzy control of SVM inverter-fed Induction Motor drive", Proc. of the International Journal of Artificial Intelligence and Soft Computing Vol. 1, Nos. 2-4, pp. 259 - 270, 2009.
[2] Mei C. G., Panda S. K., Xu J. X., Lim K. W., Direct Torque Control of Induction Motor-Variable Switching Sectors. IEEE Int. Conf. Power Electron. and Drive Sys., PEDS-99, Hong Kong, 1999, p. 80-85.
[3] Lascu C., Boldea I., Blaabjerg F., A Modified Direct Torque Control for Induction Motor Sensorless Drive. IEEE Trans. Ind. Applicat., 2000, 36(1), p. 122-130.
[4] Aller J. M., Restreo J. A., Bueno A., Paga T., Guzman V. M., Giménez M. I., Sensorless Speed Control of the Induction Machine Combining Field Orientation Method and DTC.
[5] Barut M., Bogosyan S., Gokasan M., Speed sensorless direct torque control of IMs with rotor resistance estimation. Int. J. Energy Conv. and Manag., 2005, 46, p. 335-349.
[6] Sbita L., Ben Hamed M., An MRAS-based full order Luenberger observer for sensorless DRFOC of induction motors. Int. J. ACSE, 2007, 7(1), p. 11-20.
[7] Cirrincione M., Pucci M., Sensorless direct torque control of an induction motor by a TLS-based MRAS observer with adaptive integration. Automatica, 2005, 41, p. 1843-1854.
[8] Pedro L. R. S., Aurelio G. C., Vicente F. B., Indirect-Field-Oriented Control of an Asynchronous Generator with Rotor-Resistance Adaptation Based on a Reference Model. 15th Triennial World Congress, IFAC, Barcelona, Spain, 2002.
[9] Bilal A., Umit O., Aydin E., Mehrded E., A Comparative Study on Non- Linear State Estimators Applied to Sensorless AC Drives: MRAS and Kalman Filter. 30 Annual Conf. of the IEEE Ind. Electron. Society. Busan, Korea, 2004.
[10] Ouhrouche M. A., Estimation of speed, rotor flux and rotor resistance in cage induction motor using the EKF-algorithm. Int. J. Power and Energy Sys., 2002, p. 1-20.
[11] Messaoudi M., Sbita L., Abdelkrim M. N., On-line rotor resistance estimation for sensorless indirect vector control of induction motor drives. IEEE Forth Int. Multi-Conf. on Systems, Signals and Devices SSD-07, El Hammamet, Tunisia, 2007, 2.
[12] Kyo B. L., Frede B., Reduced-Order Extended Luenberger Observer Based Sensorless Vector Control Driven by Matrix Converter With Nonlinearity Compensation. IEEE Trans. Ind. Electron., 2006, 53(1), p. 66-75.
[13] Cheng Z. C., Hai P. L., An Application of Fuzzy-Inference-Based Neural Network in DTC System of Induction Motor. In Proc. First Int. Conf. on Machine Learning and Cybernetics, Beijing, 2002, p. 354-359.
[14] Sbita L., Ben Hamed M., Fuzzy controller and ANN speed estimation for induction motor drives. IEEE Forth Int. Multi-Conf. on Systems, Signals and Devices SSD-07, El Hammamet, Tunisia, 2007, 2.
[15] Mir S., Elbuluk M. E., Zinger, D. S., PI and Fuzzy Estimators for Tuning the Stator Resistance in Direct Torque Control of Induction Machines. IEEE Trans. Power Electron., 1998, 13(2), p. 279-287.
[16] Lascu C., Boldea I., Blaabjerg F., Variable-Structure Direct Torque Control - A Class of Fast and Robust Controllers for Induction Machine Drives. IEEE Trans. Ind. Electron., 2004, 51(4).
[17] Sang M. K., Woo Y. H., Sung J. K., Design of a new adaptive sliding mode observer for sensorless induction motor drive, Electric. Power Sys. Res., 2004, 70, p. 16-22.
[18] Messaoudi M., Sbita L., Abdelkrim M. N., A robust nonlinear observer for states and parameters estimation and on-line adaptation of rotor time constant in sensorless induction motor drives. Int. J. Phys. Sci., 2007, 2(8), p. 217-225.
[19] El Hassan I., Westerholt E. V., Roboam X., De Fomel B., Comparison of different state models in Direct Torque Control of induction machines operating without speed sensor. IEEE, 2000, p. 1345-1352.
[20] Huai Y., Melnik R. V. N., Thogersen P. B., Computational analysis of temperature rise phenomena in electric induction motors. Applied Thermal Engineering, 2003, (23), p. 779-795.
[21] Nick R. N. I., Abdul H. M. Y., Direct Torque Control of Induction Machines with Constant Switching Frequency and Reduced Torque Ripple. IEEE Tran. Ind. Electron., 2004, 51(4), p. 758-767.
[22] Faiz J., Sharifian M. B. B., Keyhani A., Proca A. B., Sensorless Direct Torque Control of Induction Motors Used in Electric Vehicle. IEEE Trans. Energy Conv., 2003, 18, p. 1-10.
[23] Kang J. K., Sul S. K., New Direct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency. IEEE Trans. Ind. Applicat., 1999, 35(5), p. 1076-1082.
[24] José R., Jorge P., César S., Samir K., Hemin M., A Novel Direct Torque Control Scheme for Induction Machines with Space Vector Modulation. 35th Annul IEEE Power Electron. Specialists Conf. Aachen, Germong, 2004, p. 1392-1397.
[25] Schauder C., Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. IEEE Trans. Ind. Applicat., 1992, 28(5), p. 1054-1062.
[26] Ben Hamed M, Sbita L.: Speed sensorless indirect stator field oriented control of induction motor based on Luenberger observer, In Proc. IEEE-ISIE Conf. Montréal, Québec, Canada, 2006, 3, p. 2473-2478.
[27] Yager, R. G. "Fuzzy Logics and Artificial Intelligence", Journal of the Fuzzy Sets and Systems, Vol. 90, pp. 193-198, 1997.
[28] Lee, C. C. "Fuzzy Logic in Control System: Fuzzy Logic Controller". Proc. of the Part I/II, IEEE Trans. Systems Man. Cybernetics, Vol. 20, pp. 404-435, 1990.
[29] Takahashi I, Naguchi T. "A new quick-response and high-efficiency control strategy of an induction motor", Proc. of the IEEE Transactions on Industry Application
[ISSN 0093-9994], Vol. 22, No. 5, pp. 820-827, 1986.
[30] Hui-Hui Xiao, Shan Li, Pei-Lin Wan, Ming-Fu Zhao, ÔÇ│Study on Fuzzy Direct Torque Control SystemÔÇ│, Proc. of the Fourth International Conference on Machine Learning and Cybernetics, Beijing, pp: 4-5 August 2002.
[31] Mamdani, E. H. "Applications of Fuzzy Algorithms for Simple Dynamic Plants", Proc. of the IEE 121, pp. 1585 - 1588, 1974.
[32] TANG, L. et al "A New Direct Torque Control Strategy for Flux and Torque Ripple Reduction for Induction Motors Drive by Space Vector Modulation", Conf. Rec. IEEE-PESC-2001, Vol. 2, pp. 1440-1445, 2001.
[33] R.Toufouti S.Meziane, H. Benalla, "Direct Torque Control for Induction Motor Using Fuzzy Logic", Proc. ACSE Journal, Vol. 6, Issue 2, pp.19 - 26, Jun. 2006.
[34] Jagadish H Pujar and S.F. Kodad "Speed Control of Induction Motor Using Rough-Fuzzy Controller" Proc. of the Second International Conference on Cognition and Recognition, PES College of Engineering, Mandya, Karnataka, April 10th -12 th 2008.
[35] F. Blaschke "The principle of field orientation as applied to the new TRANSVECTOR closed loop control system for rotating field machines", Siemens Review XXXIX, (5), pp:217-220, 1972
[36] Jagadish H. Pujar, S.F. Kodad "Simulation of Fuzzy Logic Based Direct Torque Controlled Permanent Magnet Synchronous Motor Drive", Proceedings of the International Conference on Artificial Intelligence- ICAI'09, Vol. I, pp. 254-257, July 13-16, 2009, Las Vegas Nevada, USA.
[37] Jagadish H. Pujar, S. F. Kodad "Direct Torque Fuzzy Control of an AC Drive", IEEE Proc. of the International Conference on Advances in Computing, Control & Telecommunication Technologies-ACT-09, Trivandrum, India, pp. 275-277, 28-29 Dec. 2009.
[38] Jagadish H. Pujar, S. F. Kodad "Digital Simulation of Direct Torque Fuzzy Control of PMSM Servo System", International Journal of Recent Trends in Engineering- IJRTE, Vol. 2, No. 2, pp. 89-93, Nov 2009.
[39] Jagadish H. Pujar, S. F. Kodad "Fuzzy Speed Regulator for Induction Motor Direct Torque Control Scheme", International Journal of Recent Trends in Engineering- IJRTE, Vol. 3, No. 3, pp. 10-14, May 2010.
[40] Jagadish H. Pujar, S. F. Kodad "Digital Simulation of Direct Torque Fuzzy Control of IM with Fuzzy Speed Regulator", International Journal of Recent Trends in Engineering- IJRTE, Vol. 3, No. 3, pp. 15-19, May 2010.