Search results for: feed-forward and feedback control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4019

Search results for: feed-forward and feedback control.

3959 Takagi-Sugeno Fuzzy Control of Induction Motor

Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss

Abstract:

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
3958 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control

Authors: Vivekanandan C., Prabhakar .R., Prema D.

Abstract:

This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presented

Keywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
3957 Mathematical Modeling of SISO based Timoshenko Structures – A Case Study

Authors: T.C. Manjunath, Student Member, B. Bandyopadhyay

Abstract:

This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement.

Keywords: Smart structure, Timoshenko beam theory, Discretesliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
3956 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: Skid-steering, Trucksim-Simulink, feedforward control, dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
3955 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing on a Call Center that Offers Professional Services

Authors: Kiyoko Yoshimura, Yasunobu Kino

Abstract:

Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) the intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) No direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, “consideration for colleagues” influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors “customer-oriented emotional expression” and “emotional disharmony” have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.

Keywords: Call center, emotional labor, professional service, job satisfaction, customer feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
3954 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
3953 Using Collaborative Pictures to Understand Student Experience

Authors: Tessa Berg, Emma Guion Akdag

Abstract:

Summative feedback forms are used in academia for gathering data on course quality and student understanding. Students answer a series of questions based on the course they are soon to finish in these forms. Feedback forms are notorious for being homogenised and limiting and thus the data captured is often neutral and lacking in tacit emotional responses. This paper contrasts student feedback forms with collaborative drawing. We analyse 19 pictures drawn by international students on a pre-sessional course. Through visuals we present an approach to enable a holistic level of student understanding. Visuals communicate irrespective of possible language, cultural and educational barriers. This paper sought to discover if the pictures mirrored the feedback given on a typical feedback form. Findings indicate a considerable difference in the two approaches and thus we highlight the value of collaborative drawing as a complimentary resource to aid the understanding of student experience.

Keywords: Feedback forms, visualisation, student experience, collaborative drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
3952 Enhancing Camera Operator Performance with Computer Vision Based Control

Authors: Paul Y. Oh, Rares I. Stanciu

Abstract:

Cameras are often mounted on platforms that canmove like rovers, booms, gantries and aircraft. People operate suchplatforms to capture desired views of scene or target. To avoidcollisions with the environment and occlusions, such platforms oftenpossess redundant degrees-of-freedom. As a result, manipulatingsuch platforms demands much skill. Visual-servoing some degrees-of-freedom may reduce operator burden and improve tracking per-formance. This concept, which we call human-in-the-loop visual-servoing, is demonstrated in this paper and applies a Α-β-γ filter and feedforward controller to a broadcast camera boom.

Keywords: Computer vision, visual-servoing, man-machine sys-tems, human-in-the-loop control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
3951 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Authors: Jung–Min Yang

Abstract:

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

Keywords: Asynchronous sequential machines, corrective control, model matching, input/output control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
3950 Control Analysis Using Tuning Methods for a Designed, Developed and Modeled Cross Flow Water Tube Heat Exchanger

Authors: Shaival H. Nagarsheth, Utpal Pandya, Hemant J. Nagarsheth

Abstract:

Cross flow water tube heat exchanger can be designed and made operational using methods of model building and simulation of the system. This paper projects the design and development of a model of cross flow water tube heat-exchanger system, simulation and validation of control analysis of different tuning methods. Feedback and override control system is developed using inputs acquired with the help of sensory system. A mathematical model is formulated for analysis of system behaviour. The temperature is regulated at the desired set point automatically.

Keywords: Heat Exchanger, Feedback, Override, Temperature, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
3949 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
3948 Achieving Business and IT Alignment from Organisational Learning Perspectives

Authors: Hamad Hussain Balhareth, Kecheng Liu, Sharm Manwani

Abstract:

Business and IT alignment has continued as a top concern for business and IT executives for almost three decades. Many researchers have conducted empirical studies on the relationship between business-IT alignment and performance. Yet, these approaches, lacking a social perspective, have had little impact on sustaining performance and competitive advantage. In addition to the limited alignment literature that explores organisational learning that is represented in shared understanding, communication, cognitive maps and experiences. Hence, this paper proposes an integrated process that enables social and intellectual dimensions through the concept of organisational learning. In particular, the feedback and feedforward process which provide a value creation across dynamic multilevel of learning. This mechanism enables on-going effectiveness through development of individuals, groups and organisations, which improves the quality of business and IT strategies and drives to performance.

Keywords: business-IT alignment, social dimension, intellectual dimension, organisational learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3947 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
3946 Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System

Authors: A. Larabi, M. S. Boucherit

Abstract:

In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.

Keywords: Asynchronous actuator, PI Regulator, adaptivemethod with reference model, Vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
3945 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: Model predictive control, optimal control, crystal growth, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
3944 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
3943 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
3942 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
3941 Investigating Student Behavior in Adopting Online Formative Assessment Feedback

Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons

Abstract:

In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.

Keywords: Formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
3940 Robust H State-Feedback Control for Uncertain Fuzzy Markovian Jump Systems: LMI-Based Design

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper investigates the problem of designing a robust state-feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.

Keywords: Robust H, Fuzzy Control, Markovian Jump Systems, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
3939 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
3938 Robust Adaptive Vibration Control with Application to a Robot Beam

Authors: J. Fei

Abstract:

This paper presents the adaptive control scheme with sliding mode compensator for vibration control problem in the presence of disturbance. The dynamic model of the flexible cantilever beam using finite element modeling is derived. The adaptive control with sliding mode compensator using output feedback for output tracking is developed to reject the external disturbance, and to improve the tracking performance. Satisfactory simulation results verify that the effectiveness of adaptive control scheme with sliding mode compensator.

Keywords: finite element model, adaptive control, sliding modecontrol, vibration suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
3937 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
3936 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

Authors: S. Z. Sayed Hassen

Abstract:

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.

Keywords: Robust control, power system, integral action, minimax LQG control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
3935 Effects of Knowledge of Results on Specified Skill Acquisition among Fresh Cricket Players

Authors: Rasheed O. Oloyede, Joseph O. Adelusi, Peter O. Akinbile

Abstract:

This study was conducted to investigate the extent with which knowledge of results influences the performance of cricket players. A sample of 160 fresh students in the Department of Physical and Health Education who are novice in the game were randomly assigned into two groups. The first group of eighty (80) subjects was classified as experimental group while the second group of eighty (80) subjects was the control group. Subjects in both groups were asked to bowl and bat ten times each for a period of six weeks. After the first round, the subjects in the experimental group were allowed feedback on their performance in the first trial while those in the control group were denied feedback. Two null hypotheses generated for the study were tested using percentages and chi-square statistical analysis at 0.05 level of significance. Analysis of data showed that knowledge of results influenced the performance of cricket players. It was concluded that knowledge of results is pertinent for effective skill acquisition and could enhance better performance among unskilled cricket players. Hence, it is suggested that immediate feedback on the level of skill acquisition by the prospective and unskilled cricket players would inspire them for better performance in cricket tournaments.

Keywords: Batting, Bowling, Knowledge of Results, Performance, Skill Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
3934 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In the paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: Predictive control, Synchronization, Satellite attitude.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
3933 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

Authors: Walenty Oniszczuk

Abstract:

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
3932 Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

Authors: Nhu Van NGUYEN, Jean-Marc OGIER, Salvatore TABBONE, Alain BOUCHER

Abstract:

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Keywords: Relevance feedback, bag of words model, probabilistic model, vector space model, image retrieval

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
3931 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
3930 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: Localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523