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Abstract—Repetitive systems stand for a kind of systems that
perform a simple task on a fixed pattern repetitively, which are
widely spread in industrial fields. Hence, many researchers have been
interested in those systems, especially in the field of iterative learning
control (ILC). In this paper, we propose a finite-horizon tracking
control scheme for linear time-varying repetitive systems with un-
certain initial conditions. The scheme is derived both analytically
and numerically for state-feedback systems and only numerically for
output-feedback systems. Then, it is extended to stable systems with
input constraints. All numerical schemes are developed in the forms
of linear matrix inequalities (LMIs). A distinguished feature of the
proposed scheme from the existing iterative learning control is that
the scheme guarantees the tracking performance exactly even under
uncertain initial conditions. The simulation results demonstrate the
good performance of the proposed scheme.

Keywords—Finite time horizon, linear matrix inequality (LMI),
repetitive system, uncertain initial condition.

I. INTRODUCTION

THE repetitive system are widely spread over industrial
fields such as robot manipulators, bach reactors, injection

moldings and heating processes. For several decades, consid-
erable efforts have been made on the development and analysis
of tracking control for a repetitive system that performs a task
on fixed pattern repetitively [7]. Among them, the Iterative
Learning Control (ILC) has gained much attention as a useful
method, which has an excellent tracking performance [1] – [6].
Until now, most researches regarding tracking control have
been focused on the infinite horizon in the time axis and
its analysis. Unfortunately, in the practical application one
cannot but consider the finite horizon in which the tracking
performance should be guaranteed. However, there are not
much academic researches on guaranteed performance in finite
time horizon. In this paper, we handle the finite-time horizon
tracking control for repetitive systems with uncertain initial
conditions

This paper is organized as follows. Section II describes the
system model and formulates the problem. Section III finds
the performance bound of uncertain initial conditions and
calculates it by the proposed linear matrix inequality (LMI)
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conditions for three cases. Section IV presents simulation
results and the performance of the proposed controller. Finally,
section V concludes the paper with summarization and future
works.

II. PROBLEM FORMULATION

Consider the following linear discrete time-varying repeti-
tive system:

xk+1 = Akxk + Bkuk,

yk = Ckxk, (1)

where k is discrete-time index. Reference trajectory
yT
0
, yT

1
, · · · , yT

n is previously given. Before proceeding to the
next stage, we assume that

• (A1) Each successive operation ends after finite number
of steps F (> 0)

• (A2) Uncertain initial states are bounded by ε

||x0 − xc||P ≤ ε,

where P is the dimensional weighting matrix and diago-
nal.

The output can be represented as follows:

Y = Nx0 + Mu,

where

Y
�
=

⎡

⎢⎢⎢⎢⎢⎣

y0

y1

y2

...
yn

⎤

⎥⎥⎥⎥⎥⎦
, N

�
=

⎡

⎢⎢⎢⎢⎢⎣

C0

C1A0

C2A1A0

...
CnAn−1 · · ·A1A0

⎤

⎥⎥⎥⎥⎥⎦
, u

�
=

⎡

⎢⎢⎢⎢⎢⎣

x0

u0

u1

...
un−1

⎤

⎥⎥⎥⎥⎥⎦
,

M
�
=

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0
C1B0 0 · · · 0

C2A1B0 C2B1 · · · 0
...

...
. . .

...
CnAn−1...A1B0 CnAn−1...A2B1 · · · CnBn−1

⎤

⎥⎥⎥⎥⎥⎦
.

Here, let us consider the tracking problem such that

min
u

||Yr − Y ||2 ≤ γ subject to ||x0 − xc||P ≤ ε. (2)

Then, our goal of the paper is to find u minimizing upper
bound of trajectory tracking error γ when initial condition is
bounded by ε.
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III. MAIN RESULTS

A. Performance Bound of Uncertain Initial Condition

Let us define ū as

ū
�
= Mu. (3)

Then, ū can be uniquely specified if u is determined. From
(2), we can establish two matrix inequalities

[
γ − (Yr − Mu)T (Yr − Mu) (∗)

NT (Yr − Mu) −NT N

]
≥ 0, (4)

[
ε2 − xT

c Pxc (∗)
Pxc −P

]
≥ 0. (5)

Combining (4) and (5) by the S-procedure and the Schur
complement, we have
⎡

⎣
γ − τε2 + τxT

c Pxc (∗) (∗)
(Yr − Mu) I (∗)

NT (Yr − Mu) − τPxc 0 −NT N + τP

⎤

⎦ ≥ 0, (6)

where τ is a positive value. (6) is rewritten as

γ ≥ τε2 − τxT
c Pxc + J(ū), (7)

where

J(ū)
�
= [Φ − Ψū]T H[Φ − Ψū], Φ

�
=
[

Yr

NT Yr − τPxc

]
,

Ψ
�
=
[

I
NT

]
, H

�
=
[
I 0
0 (τP − NT N)−1

]
.

To minimize J(ū), we can have following result by weighted
least squares method:

ū∗ �
= Mu∗ = (ΨT HΨ)−1ΨT HΦ = Yr − Nxc, (8)

where ū∗ and u∗ are the optimum values of ū and u,
respectively. Substituting (8) into (7) yields

γ ≥ τε2 − τxT
c Pxc + J(ū∗)

= τε2 − τxT
c Pxc + xT

c [NT N + (τP − NT N)]xc

= τε.

And, using the Hessian of J(ū) (> 0), we can obtain

τ ≥ λmax(NP−1NT ),

which leads to

γmin = λmax(NP−1NT )ε2. (9)

Therefore, we can summarize following theorem.
Theorem 1: (Performance bound of uncertain initial con-

dition) For a given linear discrete time-varying system and
initial states bounded by ε (i.e. ||x0−xc|| ≤ ε), the maximum
tracking error is

||Yr − Y ||2 ≤ λmax(NP−1NT )ε2, (10)

where λmax(A) means maximum eigenvalue of A.
Proof: It has been already provided.

B. Computation of λmax(NP−1NT )
In this section, we will propose a way of calculating the

performance bound in detail. The procedure is as follows.

Let the initial condition QF
�
= CT

F CF . Recursively finding
Qn−1 such that

Qn−1 = AT
n−1

QnAn−1 + CT
n−1

Cn−1, (11)

we can obtain Q0 = NT N . Because P is diagonal, γmin =
λmax(Q0P

−1)ε2. If the system matrix A is not Hurwitz,
λmax(NP−1NT ) become very large as the time index in-
creasing, and thus it is difficult to obtain a minimum γ with
an appropriate level. In this case, N must be stabilized through
feedback mechanism. Modifying the recursive formula (11) as

Qn−1 ≥ AT
n−1

QnAn−1 + CT
n−1

Cn−1, (12)

we can minimize λmax(Q0) by finding

min tr(Qn−1) s.t.
⎡

⎣
Qn−1 (∗) (∗)

Q
1
2
nAn−1 I (∗)
Cn−1 0 I

⎤

⎦ ≥ 0.

Now, let us apply this algorithm to feedback systems.
1) State feedback: Using the feedback control law

uk = Kkxk + u∗
k,

where Kkxk is a feedback component and u∗
k is a feedforward

component, analytic solution of state feedback parameter is

Qn−1 = (An−1+Bn−1Kn−1)TQn(An−1+Bn−1Kn−1)
+CT

n−1
Cn−1,

Kn−1 =−2(BT
n−1

QnBn−1)−1BT
n−1

QnAn−1,

which can be formulated with the following LMI:

min tr(Qn−1) s.t.
⎡

⎣
Qn (∗) (∗)

Q
1
2
n+1

(An + BnKn) I (∗)
Cn 0 I

⎤

⎦ ≥ 0.

2) Output feedback: Using the dynamic output feedback
control

xc
k+1

= Ac
kxc

k + Bc
kyk,

uk = Cc
kxc

k + Dc
kyk + uf ,

where uf is the feedforward input, then we have the following
LMI condition

min
Σn−1

tr(Qn−1) s.t.

⎡

⎣
Qn (∗) (∗)

Q
1
2
n+1

(Ãn + B̃nΣnC̃n) I 0
Cn 0 I

⎤

⎦ ≥ 0,

where

Ãn
�
=
[
An 0
0 0

]
, B̃n

�
=
[

0 I
Bk 0

]
,

Σn
�
=
[
Ac

k Bc
k

Cc
k Dc

k

]
, C̃n

�
=
[
I 0
0 Ck

]
.
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C. Input Constrained System

In practical systems, since the input is often restricted in
a level, we might consider the tracking performance under
the input saturation. In this section, we deal with guaranteed
performance when the system input has a limited boundary.
If the system is unstable, feedback input is required. Due to
the input constraint, it is difficult to find a feasible solution of
(6). Therefore, let us consider that the system is stable, which
leads to the following LMI conditions

min
u

γ s.t.
⎡

⎣
γ − τε2 + τxT

c Pxc (∗) (∗)
(Yr − Mu) I (∗)

NT (Yr − Mu) − τPxc 0 −NT N + τP

⎤

⎦ ≥ 0,

τ > 0, |uk| < δ, k ∈ [0 F
]
.

It is very hard job to find analytic solution of the input
constrained system or it may be impossible. But numerical
solution using LMI method is still available. This means that
we can still guarantee performance when input condition is
limited, and it may be applied to design the reference trajectory
under uncertain initial conditions.

IV. SIMULATION RESULTS

(CASE I) The case of the unconstrained input

The case of the unconstrained input : The simulation pa-
rameters are as followings:

• Simulation condition.

Ak =
[

1.5 0.1sin(k)
0.2 −0.5

]
, B =

[
2
0

]
,

C =
[

1 0
]
, ε = 0.2,

yr(n) =
1
2
e

n
50 sin

6n

50
.

• Output feedback control is applied.
• P is the identity matrix I .

The experiment is repeated by 20 times. In each trial, initial
conditions are randomly chosen within a given boundary ε.
Fig.1 shows that output follows the reference well under the
uncertain initial conditions. The upper bound of the tracking
performance of this system is γmin = 0.04.

(CASE II) The case of the constrained input

The simulation parameters are as followings:
• Simulation condition.

Ak =
[

0.7 0.1sin(k)
0.2 −0.5

]
, B =

[
2
0

]
,

C =
[

1 0
]
, ε = 0.2, |u| < 0.4

yr(n) =
1
2
e

n
50 sin

6n

50
.

• Output feedback control is applied.
• P is the identity matrix I .

In this case, γmin = 1.08 which is much larger than (CASE
I). But we can still guarantee the performance bound of the
system with uncertain initial condition. The performance of
(CASE II) is depicted in the Fig. 2.

Fig. 1 The trajectories of the reference and the output

Fig. 2 A reference trajectory and its tracking curves of saturated input

V. CONCLUSION

In this paper, we handled the finite time horizon system
with uncertain initial condition by a repetitive manner. As
a main results, we first found the performance bound of
the uncertain initial conditions and then calculated it by the
proposed LMI conditions in three cases: the state feedback,
the output feedback and the constrained input. The simulation
results demonstrated the performance of the proposed con-
troller. However, there were some limitations to apply input
saturation. Therefore, the future work is to overcome these
limitations for the case of input saturation.
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