\r\ninput\/output switched asynchronous sequential machines is discussed

\r\nin this paper. The control objective is to determine the existence

\r\ncondition and design algorithm for a corrective controller that can

\r\nmatch the stable-state behavior of the closed-loop system to that of

\r\na reference model. Switching operations and correction procedures

\r\nare incorporated using output feedback so that the controlled

\r\nswitched machine can show the desired input\/output behavior. A

\r\nmatrix expression is presented to address reachability of switched

\r\nasynchronous sequential machines with output equivalence with

\r\nrespect to a model. The presented reachability condition for the

\r\ncontroller design is validated in a simple example.","references":"[1] J. Spars\u00f8 and S. Furber, Principles of Asynchronous Circuit Design \u2014\r\nA Systems Perspective, Kluwer Academic Publishers, 2001.\r\n[2] D. A. Huffman, \u201cThe synthesis of sequential switching circuits,\u201d J.\r\nFranklin. Inst., vol. 257, pp. 161\u2013190, 1954.\r\n[3] S. H. Unger, \u201cHazards, critical races, and metastability,\u201d IEEE Trans.\r\nComputers, vol. 44, no. 6, pp. 754\u2013768, 1995.\r\n[4] M. Schwartz, Broadband Integrated Networks, New Jersey: Prentice\r\nHall, 1996.\r\n[5] P. D. Hough, T. G. Kolda, and V. J. Torczon, \u201cAsynchronous parallel\r\npattern search for nonlinear optimization,\u201d SIAM J. Sci. Comput., vol. 23,\r\nno. 1, pp. 134\u2013156, 2001.\r\n[6] T. E. Murphy, X. Geng, and J. Hammer, \u201cOn the control of asynchronous\r\nmachines with races,\u201d IEEE Trans. Autom. Control, vol. 48, no. 6,\r\npp. 1073\u20131081, 2003.\r\n[7] X. Geng and J. Hammer, \u201cInput\/output control of asynchronous\r\nsequential machines,\u201d IEEE Trans. Autom. Control, vol. 50, no. 12,\r\npp. 1956\u20131970, 2005.\r\n[8] N. Venkatraman and J. Hammer, \u201cOn the control of asynchronous\r\nsequential machines with infinite cycles,\u201d Int. J. Control, vol. 79, no. 7,\r\npp. 764\u2013785, 2006.\r\n[9] X. Xu and Y. Hong, \u201cMatrix approach and model matching of\r\nasynchronous sequential machines,\u201d IEEE Trans. Autom. Control,\r\nvol. 58, no. 11, pp. 2974\u20132979, 2013.\r\n[10] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design,\r\nLondon: Springer-Verlag, 2006.\r\n[11] L. Zhang and J. Feng, \u201cControllability and observability of switched\r\nBoolean control networks,\u201d IET Control Theory Appl., vol. 6, no. 16,\r\npp. 2477\u20132484, 2012.\r\n[12] J. M. Yang, \u201cModeling and control of switched asynchronous sequential\r\nmachines,\u201d IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2714\u20132719,\r\n2016.\r\n[13] Z. Kohavi and N. K. Jha, Switching and Finite Automata Theory, 3rd\r\ned., Cambridge University Press: Cambridge, UK, 2010.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 121, 2017"}