Search results for: Zinc oxide.
424 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant
Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov
Abstract:
Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.
Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691423 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.
Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416422 Bias Stability of a-IGZO TFT and a new Shift-Register Design Suitable for a-IGZO TFT
Authors: Young Wook Lee, Sun-Jae Kim, Soo-Yeon Lee, Moon-Kyu Song, Woo-Geun Lee Min-Koo Han
Abstract:
We have fabricated a-IGZO TFT and investigated the stability under positive DC and AC bias stress. The threshold voltage of a-IGZO TFT shifts positively under those biases, and that reduces on-current. For this reason, conventional shift-register circuit employing TFTs which stressed by positive bias will be unstable, may do not work properly. We have designed a new 6-transistor shift-register, which has less transistors than prior circuits. The TFTs of the proposed shift-register are not suffering from positive DC or AC stress, mainly kept unbiased. Despite the compact design, the stable output signal was verified through the SPICE simulation even under RC delay of clock signal.Keywords: Indium Gallium Zinc Oxide (IGZO), Thin FilmTransistor (TFT), shift-register
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262421 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate
Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud
Abstract:
This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.Keywords: Arc spray, coating, composite, erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395420 Native Point Defects in ZnO
Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani
Abstract:
Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.
Keywords: DFT, Native, n-Type, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4555419 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: Refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723418 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method
Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi
Abstract:
Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.Keywords: Hydrothermal growth, zinc dioxide, biosensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071417 Hydrothermal Fabrication of Iodine Doped Titanium Oxide Films on Ti Substrate
Authors: M. P. Neupane, T. S. N. Sankara Narayanan, J. E. Park, Y. K. Kim, I. S. Park, K. Y. Song, T. S. Bae, M. H. Lee
Abstract:
Titanium oxide films with different morphologies have for the first time been fabricated through hydrothermal reactions between a titanium substrate and iodine powder in water or ethanol. SEM revealed that iodine supported titanium (Ti-I2) surface shows different morphologies with variable treatment conditions. The mean surface roughness (Ra) was increased in the different groups. Use of surfactant has a role to increase the roughness of the film. The surface roughness was in the range of 0.15 μm-0.42 μm. Furthermore, the electrochemical examinations showed that the Ti-I2 surface fabricated in alcoholic medium has high corrosion resistance than in aqueous medium.
Keywords: Corrosion, Hydrothermal, Surface roughness, Titanium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934416 Serum Nitric Oxide and Sialic Acid: Possible Biochemical Markers for Progression of Diabetic Nephropathy
Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Shah A. Qader, Abid Azhar, Tabassum Mahboob
Abstract:
This study was designed to investigate the role of serum nitric oxide and sialic acid in the development of diabetic nephropathy as disease marker. Total 210 diabetic patients (age and sex matched) were selected followed by informed consent and divided into four groups (70 each) as I: control; II: diabetic; III: diabetic hypertensive; IV: diabetic nephropathy. The blood samples of all subjects were collected and analyzed for serum nitric oxide, sialic acid, fasting blood glucose, serum urea, creatinine, HbA1c and GFR. The BMI, systolic and diastolic blood pressures, blood glucose, HbA1c and serum sialic acid levels were high (p<0.01) in group II as compared to control subjects. The higher levels (p<0.01) of BMI, systolic and diastolic blood pressures, blood glucose, HbA1c, serum urea, creatinine and sialic acid were observed in group III and IV as compared to controls. Significantly low levels of GFR and serum nitric oxide (p<0.01) were observed in group III and IV as compared to controls. Results indicated that serum nitric oxide and sialic acid are the major biochemical indicators for micro and macrovascular complications of diabetes such as hypertension and nephropathy. These should be taken into account during screening procedures regarding identifications of the diabetic patients to get them rid of progressive renal impairment to ESRD.
Keywords: Diabetic nephropathy, hypertension, nitric oxide, sialic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702415 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.
Keywords: Chelators, meat quality, pigs, silicic acid, zinc sulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965414 Titanium-Aluminum Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.
Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589413 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures
Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar
Abstract:
In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nanostructures (Zn1-δCraFebO; where δ = a + b = 20%, a = 5, 6, 8 & 10% and b = 15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractrometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UVvisible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.
Keywords: Nanostructures, Optical Properties, Sol-gel method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4708412 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling
Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar
Abstract:
The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.Keywords: Lead, zinc heavy metal, activated clay, kinetic study, competitive adsorption, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842411 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation
Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah
Abstract:
The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy. Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.
Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903410 Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites
Authors: S. Rasti, M. A. Rajabzadeh
Abstract:
Nickel-bearing laterites occur as two parallel belts along Sedimentary Zagros Orogenic (SZO) and Metamorphic Sanandaj-Sirjan (MSS) petrostructural zones, Fars Province, south Iran. An undisturbed vertical profile of these laterites includes protolith, saprolite, clay, and oxide horizons from base to top. Highly serpentinized harzburgite with relicts of olivine and orthopyroxene is regarded as the source rock. The laterites are unusual in lacking a significant saprolite zone with little development of Ni-silicates. Hematite, saponite, dolomite, smectite and clinochlore increase, while calcite, olivine, lizardite and chrysotile decrease from saprolite to oxide zones. Smectite and clinochlore with minor calcite are the major minerals in clay zone. Contacts of different horizons in laterite profiles are gradual and characterized by a decrease in Mg concentration ranging from 18.1 to 9.3 wt.% in oxide and saprolite, respectively. The maximum Ni concentration is 0.34 wt.% (NiO) in the base of the oxide zone, and goethite is the major Ni-bearing phase. From saprolite to oxide horizons, Al2O3, K2O, TiO2, and CaO decrease, while SiO2, MnO, NiO, and Fe2O3 increase. Silica content reaches up to 45 wt.% in the upper part of the soil profile. There is a decrease in pH (8.44-8.17) and an increase in organic matter (0.28-0.59 wt.%) from base to top of the soils. The studied laterites are classified in the oxide clans which were derived from ophiolite ultramafic rocks under Mediterranean climate conditions.
Keywords: Iran, laterite, mineralogy, ophiolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387409 The Effect of a Nutrient Fortified Oat Drink on Iron, Zinc, Vitamin A, and Vitamin C Status among Filipino Children
Authors: Imelda Angeles-Agdeppa, Anne C. Kurilich, Yashna Harjani, Mario V. Capanzana
Abstract:
The effectiveness of consuming a nutrient fortified oat drink on iron, zinc, vitamin A and vitamin C status was assessed among a cohort of school-aged Filipino children. Ultimate study implementation permitted only a within-subject comparison of change in nutritional status after four months of consuming a nutrient fortified oat drink. Thirty-eight anemic children (5-8 years) consumed an oat drink fortified with iron as NaFeEDTA, zinc, vitamin A and vitamin C for 120 days. Height, weight, serum nutrient levels, anemia status and dietary intake were assessed pre and post intervention. Thirty-four anemic children completed the intervention. After 4 months of intervention, prevalence of anemia decreased by 68% and significant improvements in iron and vitamin A status were observed. Results demonstrate the effectiveness of the fortified oat drink in alleviating anemia in young children and highlight the value of fortification programs
Keywords: Anemia, Children, Fortified Oat Drink, Nutrient status
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416408 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts
Authors: Velid Demir, Mesut Akgün
Abstract:
The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al2O3 using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al2O3 was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La2O3/γ-Al2O3 at the same parameters. For this study, ZnO/γ-Al2O3 was the most suitable catalyst due to performance and cost considerations.
Keywords: Biodiesel, heterogeneous catalyst, Jatropha oil, supercritical methanol, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170407 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs
Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen
Abstract:
This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.Keywords: Anodic aluminum oxide, nanotube, anodization, Sol-Gel, hydrophilicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094406 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents
Authors: M. Sajjadnejad, H. Karimi Abadeh
Abstract:
In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.
Keywords: Corrosion, duty cycle, pulsed current, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848405 Adsorption of Bovine Serum Albumin on CeO2
Authors: Roman Marsalek
Abstract:
Preparation of nanoparticles of cerium oxide and adsorption of bovine serum albumin on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nanoparticles was 9 nm. The simultaneous measurements of the bovine serum albumin adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nanoparticles. The maximum adsorption capacity was found for strongly acid suspension (am = 118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumin on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nanoparticles plays the key role in adsorption of proteins on such type of materials.
Keywords: Adsorption, BSA, cerium oxide nanoparticles, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059404 Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs
Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini
Abstract:
Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.
Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039403 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System
Authors: R. Mahjoub, K. Maghsoudi Mehraban
Abstract:
In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.
Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511402 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.
Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5662401 Flexible Laser Reduced Graphene Oxide/ MnO2 Electrode for Supercapacitor Applications
Authors: Ingy N. Bkrey, Ahmed A. Moniem
Abstract:
We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.
Keywords: Electrode Deposition, Flexible, Graphene oxide, Graphene, High Power CO2 Laser, MnO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709400 The Catalytic Effects of Potassium Dichromate on the Pyrolysis of Polymeric Mixtures Part I: Hazelnut Shell and Polyethylene Oxide and their Blend Cases
Authors: A. Caglar, B. Aydinli
Abstract:
The pyrolysis of hazelnut shell, polyethylene oxide and their blends were carried out catalytically at 500 and 650 ºC. Potassium dichromate was chosen according to its oxidative characteristics and decomposition temperature (500 ºC) where decomposition products are CrO3 and K2CrO4. As a main effect, a remarkable increase in gasification was observed using this catalyst for pure components and blends especially at 500 ºC rather than 650 ºC contrary to the main observation in the pyrolysis process. The increase in gas product quantity was compensated mainly with decrease in solid product and additionally in some cases liquid products.
Keywords: Hazelnut shell, Polyethylene oxide, Potassium dichromate, Pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841399 Bactericidal Properties of Carbohydrate-Stabilized Platinum Oxide Nanoparticles
Authors: Saeed Rezaei-Zarchi
Abstract:
Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (Fructose and sucrose) as the reducing and stabilizing agents. The crystallite size of these nanoparticles was evaluated from X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and was found to be 10 nm as shown in figure 1, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM (Figure 1). The nanoparticles (100 μg/ml) were administered to the Pseudomonas Stutzeri and Lactobacillus cultures and the incubation was done at 35 oC for 24 hours. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. Stutzeri and and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates.Keywords: Platinum oxide, P. Stutzeri, Lactobacillus, bactericidal effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121398 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra calothyrsus Leaf Extract
Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satrya Oktaviano, Adam Kusuma Rianto
Abstract:
Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255 cm-1, 1600 cm-1, 1384 cm-1, 1205 cm-1, 1041 cm-1, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction patterns at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28 nm, 23 nm, 12 nm, and 9 nm.
Keywords: Calliandra calothyrsus, green-synthesis, magnesium oxide, nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198397 Electrical Characterization and Reliability Analysis of HfO2-TiO2-Al MOSCAPs
Authors: Shibesh Dutta, Sivaramakrishnan R., Sundar Gopalan, Balakrishnan Shankar
Abstract:
MOSCAPs of various combinations of Hafnium oxide and Titanium oxide of varying thickness with Aluminum as gate electrode have been fabricated and electrically characterized. The effects of voltage stress on the I-V characteristics for prolonged time durations have been studied and compared. Results showed hard breakdown and negligible degradation of reliability under stress.Keywords: breakdown, MOSCAP, voltage stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451396 Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment
Authors: K. K. Saju, A. R. Reghuraj
Abstract:
High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance.Keywords: Conversion coatings, 410 stainless steel, black oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296395 Evaluation of Zinc Status in the Sediments of the Kaohsiung Ocean Disposal Site, Taiwan
Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong
Abstract:
The distribution, enrichment, and accumulation of zinc (Zn) in the sediments of Kaohsiung Ocean Disposal Site (KODS), Taiwan were investigated. Sediment samples from two outer disposal site stations and nine disposed stations in the KODS were collected per quarterly in 2009 and characterized for Zn, aluminum, organic matter, and grain size. Results showed that the mean Zn concentrations varied from 48 mg/kg to 456 mg/kg. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments collected from the KODS can be characterized between moderate and moderately severe degree enrichment and between none and none to medium accumulation of Zn, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk. The EF, Igeo, and Zn concentrations at the disposed stations were slightly higher than those at outer disposal site. This indicated that the disposed area centers may be subjected to the disposal impaction of harbor dredged sediments.Keywords: ocean dispose; zinc; enrichment factor; potential ecological risk index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590