Search results for: Nonlinear isotropic diffusion
1426 A Modification on Newton's Method for Solving Systems of Nonlinear Equations
Authors: Jafar Biazar, Behzad Ghanbari
Abstract:
In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.
Keywords: System of nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961425 On the Approximate Solution of a Nonlinear Singular Integral Equation
Authors: Nizami Mustafa, C. Ardil
Abstract:
In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.
Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311424 Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow
Authors: Thomas Fiedler, Irina V. Belova, Graeme E. Murch
Abstract:
Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.Keywords: Coupled Analysis, Laminar Flow, Lattice MonteCarlo, Thermal Diffusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971423 Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Calcium [Ca2+] is an important second messenger which plays an important role in signal transduction. There are several parameters that affect its concentration profile like buffer source etc. The effect of stationary immobile buffer on Ca2+ concentration has been incorporated which is a very important parameter needed to be taken into account in order to make the model more realistic. Interdependence of all the important parameters like diffusion coefficient and influx over [Ca2+] profile has been studied. Model is developed in the form of advection diffusion equation together with buffer concentration. A program has been developed using finite volume method for the entire problem and simulated on an AMD-Turion 32-bit machine to compute the numerical results.Keywords: Ca2+ profile, buffer, Astrocytes, Advection diffusion, FVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731422 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22111421 Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames
Authors: A. M. Tahsini
Abstract:
Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that just in stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.
Keywords: Diffusion flame, Ignition delay time, Mixing layer, Numerical simulation, Premixed flame, Supersonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19841420 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191419 Lamb Waves in Plates Subjected to Uniaxial Stresses
Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng
Abstract:
On the basis of the theory of nonlinear elasticity, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.Keywords: Acoustoelasticity, dispersion, finite deformation, lamb waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581418 Stochastic Simulation of Reaction-Diffusion Systems
Authors: Paola Lecca, Lorenzo Dematte
Abstract:
Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.
Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431417 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.
Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481416 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.
Keywords: Transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16781415 Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator
Authors: Md. Alal Hosen
Abstract:
In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x1/3. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x1/3 force nonlinear oscillator but it is also useful for many other nonlinear problems.
Keywords: Approximate solutions, Harmonic balance method, Nonlinear oscillator, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14341414 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation
Authors: A. Keshavarz, Z. Roosta
Abstract:
In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.
Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8671413 Technology Diffusion and Inclusive Development in Africa: A System Dynamics Perspective
Authors: M. Kaggwa
Abstract:
Technology or lack of it will play an important role in Africa-s effort to achieve inclusive development. Although a key determinant of competitiveness, new technology can exacerbate exclusion of the majority from the mainstream economic activities. To minimise potential technology exclusion while leveraging its critical role in African-s development, requires insight into technology diffusion process. Using system dynamics approach, a technology diffusion model is presented. The frequency of interaction of people exposed to and those not exposed to technology, and the technology adoption rate - the fraction of people who embrace new technologies once they are exposed, are identified as the broad factors critical to technology diffusion to wider society enabling more people to be part of the economic growth process. Based on simulation results, it is recommends that these two broad factors should form part of national policy aimed at achieving inclusive and sustainable development in Africa.
Keywords: Inclusive Development, System Dynamics, Technology, Technology diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421412 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17291411 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12121410 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations
Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat
Abstract:
Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201409 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14361408 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures
Authors: Ruediger Schmidt, Thang Duy Vu
Abstract:
Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.
Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061407 Loop-free Local Path Repair Strategy for Directed Diffusion
Authors: Basma M. Mohammad El-Basioni, Sherine M. Abd El-kader, Hussein S. Eissa
Abstract:
This paper proposes an implementation for the directed diffusion paradigm aids in studying this paradigm-s operations and evaluates its behavior according to this implementation. The directed diffusion is evaluated with respect to the loss percentage, lifetime, end-to-end delay, and throughput. From these evaluations some suggestions and modifications are proposed to improve the directed diffusion behavior according to this implementation with respect to these metrics. The proposed modifications reflect the effect of local path repair by introducing a technique called Loop-free Local Path Repair (LLPR) which improves the directed diffusion behavior especially with respect to packet loss percentage by about 92.69%. Also LLPR improves the throughput and end-to-end delay by about 55.31% and 14.06% respectively, while the lifetime decreases by about 29.79%.Keywords: Attribute-value based naming scheme, data gathering, data-centric routing, energy-efficiency, locality, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14291406 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand
Abstract:
In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.
Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811405 A Finite Point Method Based on Directional Derivatives for Diffusion Equation
Authors: Guixia Lv, Longjun Shen
Abstract:
This paper presents a finite point method based on directional derivatives for diffusion equation on 2D scattered points. To discretize the diffusion operator at a given point, a six-point stencil is derived by employing explicit numerical formulae of directional derivatives, namely, for the point under consideration, only five neighbor points are involved, the number of which is the smallest for discretizing diffusion operator with first-order accuracy. A method for selecting neighbor point set is proposed, which satisfies the solvability condition of numerical derivatives. Some numerical examples are performed to show the good performance of the proposed method.Keywords: Finite point method, directional derivatives, diffusionequation, method for selecting neighbor point set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571404 Internal Surface Measurement of Nanoparticle with Polarization-interferometric Nonlinear Confocal Microscope
Authors: Chikara Egami, Kazuhiro Kuwahara
Abstract:
Polarization-interferometric nonlinear confocal microscopy is proposed for measuring a nano-sized particle with optical anisotropy. The anisotropy in the particle was spectroscopically imaged through a three-dimensional distribution of third-order nonlinear dielectric polarization photoinduced.Keywords: nanoparticle, optical storage, microscope
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671403 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.Keywords: Maximum Likelihood, nonlinear, parameters, stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22191402 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12521401 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171400 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.
Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9521399 Geometric and Material Nonlinear Analysis of Reinforced Concrete Structure Considering Soil-Structure Interaction
Authors: Mohamed M. El-Gendy, Ibrahim A. El-Arabi, Rafik W. Abdel-Missih, Omar A. Kandil
Abstract:
In the present research, a finite element model is presented to study the geometrical and material nonlinear behavior of reinforced concrete plane frames considering soil-structure interaction. The nonlinear behaviors of concrete and reinforcing steel are considered both in compression and tension up to failure. The model takes account also for the number, diameter, and distribution of rebar along every cross section. Soil behavior is taken into consideration using four different models; namely: linear-, nonlinear Winkler's model, and linear-, nonlinear continuum model. A computer program (NARC) is specially developed in order to perform the analysis. The results achieved by the present model show good agreement with both theoretical and experimental published literature. The nonlinear behavior of a rectangular frame resting on soft soil up to failure using the proposed model is introduced for demonstration.Keywords: Nonlinear analysis, Geometric nonlinearity, Material nonlinearity, Reinforced concrete, Finite element method, Soilstructure interaction, Winkler's soil model, Continuum soil model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26691398 Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley
Authors: M. A. Basunia
Abstract:
Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.Keywords: Thin-layer, barley, re-wetting parameters, temperature, relative humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001397 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786