Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084920

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635

References:


[1] E.F. Crawley, J. de Luis: Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal 25 (1987), 1373-1385.
[2] R. Lammering: The application of finite shell elements for composites containing piezoelectric polymers in vibration control, Computers & Structures 41 (1991), 1101-1109.
[3] H. Kioua, S. Mirza: Piezoelectric induced bending and twisting of laminated composite shallow shells, Smart. Mater. Struct. 6 (2000), 476- 484.
[4] S. Lee, N.S. Goo, H.C. Park, K.J. Yoon, C. Cho: A nine-node assumed strain shell element for analysis of a coupled electromechanical system, Smart. Mater. Struct. 12 (2003), 355-336.
[5] Chr├│ścielewski, P. Klosowski, R. Schmidt: Theory and numerical simulation of nonlinear vibration control of arches with piezoelectric distributed actuators, Machine Dynamics Problems 20 (1998), 73-90.
[6] S. Yi, S.F. Ling, M. Ying: Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators, Finite Elements in Analysis and Design 35 (2000), 1-15.
[7] A. Mukherjee, A.S. Chaudhuri: Piezolaminated beams with large deformations, Int. J. of Solids and Structures 14 (2002), 1567-1582.
[8] S. Lentzen, R. Schmidt: Simulation of sensor application and shape control of piezoelectric structures at large deflections, in Advances in Computational & Experimental Engineering & Science, eds. S.N. Atluri, A.J.B Tadeu, p. 439-444, Tech Science Press, 2004.
[9] S. Lentzen, R. Schmidt: A geometrically nonlinear finite element for transient analysis of piezolaminated shells, Proceedings Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, 7 - 12 August 2005, eds. D.H. van Campen, M.D. Lazurko, W.P.J.M. van den Oever, 2492 - 2500, Eindhoven University of Technology 2005.
[10] S. Lentzen, P. Klosowski, R. Schmidt: Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells, Smart Mater. Struct.16 (2007), 2265-2274.
[11] T.D. Vu, S. Lentzen, R. Schmidt: Geometrically nonlinear FE-analysis of piezolaminated plates based on first- and third-order shear deformation theory, Proc. 8th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8 - 12 November 2004, eds. Nguyen Khoa Son, Pham Thuong Cat, Pham Anh Tuan, 267-272, Vietnam National University Publisher, Hanoi 2004.
[12] T.D. Vu, R. Schmidt: Nonlinear third-order shear deformation FE simulation of the sensor output voltage of piezolaminated plates, in: "Advances in Computational & Experimental Engineering and Science", eds. W.H. Chen, S.N. Atluri, 452-458, Tech Science Press, Encino, California, USA, 2009.
[13] R. Schmidt, T.D. Vu : Nonlinear dynamic FE simulation of smart piezolaminated structures based on first- and third-order transverse shear deformation theory, Advanced Materials Research, 79-82 (2009), 1313- 1316.
[14] T. Bailey, J.E. Hubbard: Distributed piezoelectric-polymer active vibration control of a cantilever beam, AIAA J. of Guidance, Control, and Dynamics 8 (1985), 605-611.
[15] I. Kreja, R. Schmidt: Large rotations in first-order shear deformation FE analysis of laminated shells, International Journal of Non-Linear Mechanics 41 (2006), 101-123.
[16] R. Schmidt, J.N. Reddy: A refined small strain and moderate rotation theory of elastic anisotropic shells, ASME Journal of Applied Mechanics 55 (1988), 611-617.
[17] I. Kreja, R. Schmidt, J.N. Reddy: Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, Int. J. of Non-Linear Mechanics 32 (1997), 1123-1142.
[18] Q.D. Nguyen, S. Lentzen, R. Schmidt: A geometrically nonlinear thirdorder shear deformation finite plate element incorporating piezoelectric layers, Proc. 8th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8 - 12 November 2004, eds. Nguyen Khoa Son, Pham Thuong Cat, Pham Anh Tuan, 303-308, Vietnam National University Publisher, Hanoi 2004.
[19] I. Kreja, R. Schmidt, Moderate rotation shell theory in FEM application. Zeszyty Naukowe Politechniki Gdańskiej (Research Transactions of Gdansk University of Technology), 522 (1995), 229-249.