
 

 

 
Abstract—On the basis of the theory of nonlinear elasticity, the 

effect of homogeneous stress on the propagation of Lamb waves in 
an initially isotropic hyperelastic plate is analysed. The equations 
governing the propagation of small amplitude waves in the pre-
stressed plate are derived using the theory of small deformations 
superimposed on large deformations. By enforcing traction free 
boundary conditions at the upper and lower surfaces of the plate, 
acoustoelastic dispersion equations for Lamb wave propagation are 
obtained, which are solved numerically. Results are given for an 
aluminum plate subjected to a range of applied stresses. 
 

Keywords—Acoustoelasticity, dispersion, finite deformation, 
lamb waves.  

I. INTRODUCTION 

HE study of wave propagation problems in pre-stressed 
media has been the subject of much research over the past 

century. Early works in this area were however restricted to 
linear elasticity and the effect of small deformations on the 
propagation of small amplitude waves; see, for example, the 
pioneering contribution by [1], [2]. It was not until the 
development of the finite deformation theory by [3], [4] that 
the nonlinear effects of stresses were taken into account.  

The acoustoelastic effect is a nonlinear phenomenon that 
describes the change in the speed of small amplitude waves in 
an elastic body due to the presence of a static pre-stress [5]. 
The theory of acoustoelasticity for bulk waves was initially 
developed by [6] who derived equations relating the wave 
velocity to the applied stress for isotropic materials subjected 
to uniaxial and hydrostatic loading. Their work was 
subsequently generalised by [7] and [8] to materials of 
arbitrary crystal symmetry.  

Acoustoelasticity is now a well-established procedure 
utilised in the non-destructive evaluation of applied and 
residual stresses. Its underlying principles have been 
comprehensively described in the reviews [9], [10]. Ultrasonic 
bulk waves and the acoustoelastic effect have been used over 
the past sixty years for the measurement and control of 
residual stresses in welded structures and railroad rails, the 
tightening of bolts, the assessment of stress levels in bars and 
in multi-wire strands as well as the measurement of the stress 
distribution near a well bore [11].  

The use of guided waves instead of bulk waves to measure 
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stresses has received significant attention over the last few 
decades due to the long propagation range associated with 
guided waves. In particular, guided waves in plate-like 
structures, also known as Lamb waves, have been found to be 
sensitive to changes in structural properties [12], [13], 
temperature and stress [14]. Despite that, there has not been 
much research on the theory of acoustoelasticity with regards 
to Lamb waves.  

The paper [15] provides a fairly comprehensive 
acoustoelastic formulation to analyse the effect of uniaxial and 
biaxial loading in initially isotropic plates. However, their 
work is restricted to infinitesimal initial strains and small 
amplitude wave motion such that all the governing equations 
are linearised. In the current paper, the theory of 
acoustoelasticity is established using the theory of incremental 
deformations superimposed on a large deformation, which is 
based on the modern treatment of nonlinear elasticity by [16]. 
The wave propagation is considered as an infinitesimal 
deformation which is superimposed onto a finite static 
homogeneous deformation.  

The paper is structured as follows. In the beginning, the 
constitutive equation for an isotropic hyperelastic material 
with initial stress and the equations governing incremental 
deformations superimposed on a finite deformation are 
recalled [17]. These equations are subsequently specialised to 
the case of weakly nonlinear elasticity and to uniaxial tension. 
The characteristic equations for symmetric and anti-symmetric 
Lamb wave modes are then derived by considering the 
propagation of homogeneous plane waves and enforcing 
traction free boundary conditions at the surfaces of the plate. 
Finally, these equations are solved numerically and results are 
presented for various applied stresses.  

 

 

Fig. 1 Alignment of reference coordinate system 

II. PROBLEM FORMULATION 

Consider an infinite plate of thickness , composed of an 
isotropic hyperelastic material with density , in some 
unstressed reference configuration. Material points in this 
configuration have position vectors  relative to a Cartesian 
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coordinate system , ,  aligned as shown in Fig. 1. The 
origin of the coordinate system lies at the mid-plane of the 
plate and the normal to the surface coincides with the  axis.  

Suppose the plate is now subjected to a finite static pure 
homogeneous strain so that it occupies a new configuration, 
referred to as the deformed configuration. The material points 

 in the reference configuration then take up the position  in 
the deformed configuration, given by  
 

, , 	,  (1) 
 
where , ,  is the Cartesian coordinate system in the 
deformed configuration, which, for convenience, is referred to 
the same origin as the reference coordinate system. The 
constants , ,  are the principal stretches of the 
deformation.  

For isotropic hyperelastic materials, the principal Cauchy 
stress required to maintain the plate in its static state of finite 
deformation may be expressed in terms of the principal 
stretches as 
 

σ 	,  (2) 
 
where  is the strain energy density per unit volume which is 

a function of the principal stretches, 	, , 

, ∈ 1,2,3  and there is no sum over repeated indices.  
The associated strain-induced anisotropy in the material 

response may also be characterised in terms of the principal 
stretches as 
 

	,

	,																													 , 	 	,

	,																										 , 	 	,

1
2

	,						 , 	 	,

1
2

	,						 , 	 ,

  (3) 

 
where  are the (non-zero) components of the 
instantaneous elasticity tensor relative to the deformed 

configuration, , , ∈ 1,2,3  and again, no 

summation is implied by the repetition of indices [16], [17].  
The material point at  in the deformed configuration is 

now considered to undergo a small dynamic displacement 
, , which is superposed upon the initial finite static 

deformation. The material response due to this incremental 
deformation may then be described by the incremental 
constitutive relation [18] 
 

S ,  (4) 

 

where S  is the incremental nominal stress tensor. The 
incremental equations of motion are given by 

	,  (5) 

 
where  is the density of the material in the deformed 
configuration.  

In order to study small but finite elastic effects, the strain 
energy function is specialised to weakly nonlinear elasticity 
[19]. An appropriate form of the strain energy function in this 
case is the Murnaghan energy function [20], which is given by 
 

8
3

4
2 2 3

									
24

3 	
12

3 3 	

8
1 ,

  (6) 

 
where ,  are the classical Lamé constants, , ,  are the 
third order elastic constants and , ,  are the principal 
invariants of the Right Cauchy-Green deformation tensor.  

For definiteness, the strain energy function should be cast in 
terms of the principal stretches rather than in terms of the 
principal invariants. For this purpose, the relations 

, 	, 	are substituted in 
(6), which yields 

 

8
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								 2 2 3
24

3

									
12

3

8
1 .

  (7) 

III. UNIAXIAL TENSION 

The finite homogeneous deformation is now specialised to 
the case of uniaxial tension. Without loss of generality, the 
uniaxial Cauchy stress  may be taken to be along the  
direction, such that 	  (with 0) and the 
corresponding principal stretch is λ . Due to the Poisson 
effect, the plate contracts laterally in the  and  directions 
and by symmetry, λ λ  [21].  

In general, the uniaxial tension is specified in terms of the 
nominal stress tensor which relates the axial force in the 
current (deformed) configuration to the area in the reference 
configuration. The principal components of the nominal stress 
can be expressed in terms of the principal stretches as [22] 

 

	.  (8) 

 
For a given uniaxial nominal stress , the principal 

stretches can be determined by inverting the relation in (8), 
and setting the lateral stresses  and  to zero. The 
principal Cauchy stresses and the components of the elasticity 
tensor can then be found using (2) and (3) respectively.  

It is worth noting that, as a result of the uniaxial stress, the 
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elastic response of the plate becomes transversely isotropic in 
nature. However, the elasticity tensor does not possess the 
same symmetry as in the case of classical transversely 
isotropic linear elasticity [20]. 

IV. ACOUSTOELASTIC LAMB WAVES 

The propagation of acoustoelastic Lamb waves in the 
presence of a homogeneous uniaxial stress field requires the 
equation governing incremental motions superimposed on a 
finite deformation, as given by (5), to be solved in conjunction 
with traction free boundary conditions at the surfaces of the 
plate.  

Here, the analysis is restricted to the propagation of 
homogeneous plane waves along the direction of the applied 
uniaxial stress only. It is assumed that the waves are confined 
to the  plane and propagate in the  direction. 
Following [23], the wave motion is modeled as  

 
	, 1,2,3	,  (9) 

 
where  is the particle displacement,  is the amplitude of 
the displacement,  is the wavenumber along the  direction, 

 is the ratio of the wavenumbers in the  direction to that in 
the  direction and  is the phase velocity in the  direction.  

Substituting (9) into the incremental equations of motion (5) 
gives an eigenvalue problem, which can be expressed as  
 

	 0	, , 1,2,3	,  (10) 
 
where the components of  are given by 
 

	,

	,

	,

	,

	,

	,

	,

	,

	.

 

(11) 

 
Since the only non-zero components of the elasticity tensor 

for a pre-stressed isotropic material are , ,,  and 
,  [21], (11) then reduces to 

 
	,

0	,

,

0	,

	,

0	,

,

0	,

	.

  (12) 

 

The vanishing of the coefficients , ,  and  in 
(12) means that the analysis can be confined to displacements 
in the  and  directions only as the shear horizontal wave 
motions uncouple from the Lamb wave motion [23]. 
Therefore, (10) can be re-written as 
 

0 , , 	 1,3 .   (13) 
 

For non-trivial solutions to the eigenvalue problem, the 
determinant of the coefficient matrix in (13) must be equal to 
zero 
 

0 , , 	 1,3 .  (14) 
 

This yields a fourth order equation in  which can be 
written as 
 

P P P 	 0	,   (15) 
 
where the coefficients P 	, P 	and P 	 are given by 
 
P ,

P

									

	,

P .

  (16) 

 
The lack of odd power coefficients in (15) means that the 

fourth order equation can be reduced to a quadratic equation in 
. This simplification results in four solutions for , which 

are denoted by , ∈ 1,2,3,4 , with the following properties 
 

, 	.   (17) 
 

Using the relations in (12), the displacement ratio  to  
for each of the  can be expressed as 
 

	.  (18) 

 
The displacement field of the Lamb waves can then be 

written in terms of the displacement ratio (18) by using the 
principle of superposition  

 

	 ,

	 .

  (19) 

 
Similarly, the stress field can be found by substituting the 

displacement field (19) into the incremental stress–
displacement relations (4)  
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S 	,

S 	 ,

  (20) 

 
where 

	,

	.
  (21) 

 
Incorporating the symmetries (17) into (18)-(21) results in 

the following restrictions  
 

	,

	,

																									 , 1,3.

  (22) 

 
In order to satisfy the incremental traction free boundary 

conditions at the upper and lower surfaces of the plate, the 
components of the incremental nominal stress must be set to 
zero  

 

S S 0	at 	.	 (23) 
 
This leads to four equations which can be expressed as  
 

							 .

																													

0

0

0

0

		

  (24) 

 

where ,  and . For non-
trivial solutions, the determinant of the coefficient matrix in 
(24) must be equal to zero  
 

												 0	  (25) 

 
Finally, using row-column operations and the symmetries in 

(22), (25) can be reduced to two characteristic equations  
 

cot γα cot γα 0	,

tan γα tan γα 0	,
  (26) 

 
corresponding to the symmetric and anti-symmetric Lamb 

wave modes respectively, with γ  and  being the 

angular frequency of the wave.  

V. SELECTED RESULTS 

In this section, the characteristic equations (26) derived in 
Section IV are solved numerically using the algorithm 
developed by [24]. Dispersion results are presented in terms of 
the phase velocity as a function of the frequency-thickness 
product for an aluminum plate. The elastic properties of the 
plate are listed in Table I and were obtained from the 
experimental work of Asay and Guenther [25]. 

 
TABLE I 

ELASTIC PROPERTIES FOR 6061-T6 ALUMINUM 

Material property Value 

 54.308	GPa 

 27.174	GPa 

 281.5	GPa 

 339.0	GPa 

 416.0	GPa 

 2704	kg/m  

 

 

 

Fig. 2 (a) Symmetric modes, (b) Anti-symmetric modes, for Lamb 
waves propagating in an aluminum plate along the direction of a 

uniaxial tension of 50 MPa. 
 
Fig. 2 (a) and (b) show the symmetric and anti-symmetric 

Lamb wave modes for the aluminum plate subjected to a 
uniaxial tension of 50 MPa. The propagation of the waves is 
considered to be along the direction of the applied stress. The 
shear horizontal modes are not shown here as they decouple 
from the Lamb wave modes. It can be seen that the dispersion 
curves obtained are very similar to the ones for an unstressed 
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aluminum plate. This is because the phase velocity is not 
significantly affected by the applied stress as the 
acoustoelastic effect acts only on the third-order elastic 
constants [11].  

Fig. 3 shows the relative change of the phase velocity of the 
fundamental symmetric mode (S0), compared to the 
unstressed state, as a function of the level of applied tension. 
Although the relative change is quite small, it can be observed 
that the change in the phase velocity is negative for all the 
values of stress considered. This means that tensile stresses 
cause a decrease in the phase velocity of the S0 mode, which 
is consistent with the fact that the bulk wave speed along the 
direction of an applied tensile load is less than the unstressed 
wave speed [6]. Furthermore, it can be seen that higher levels 
of applied stress result in larger changes in the phase velocity, 
particularly in the lower frequency-thickness region. However, 
at higher frequency-thickness values, the change in the phase 
velocity is relatively constant but is still negative.  

 

 

Fig. 3 Relative change of phase velocity for the S0 mode as a 
function of the applied tension 

 

 

Fig. 4 Relative change of phase velocity for a uniaxial tension of 100 
MPa 

 
The sensitivity of the S0 mode and the fundamental anti-

symmetric mode (A0) to an applied stress of 100 MPa is 
compared in Fig. 4. At low frequency-thickness values, the A0 
mode shows a high sensitivity to the applied stress. However, 
the phase velocity decreases rapidly with increasing values of 
the frequency-thickness product. Thus, in practice, it would be 

preferable to use the S0 mode as it maintains a higher 
sensitivity over a longer range of frequencies. Moreover, at 
higher frequency-thickness values, it can be seen that both the 
S0 and A0 modes converge towards the same value of the 
relative change of phase velocity. This is not surprising since 
both modes converge to the Rayleigh wave velocity at high 
frequencies [26].  

VI. CONCLUDING REMARKS 

In this paper, the problem of Lamb wave propagation in an 
initially isotropic elastic plate subjected to a finite 
homogeneous deformation is analysed. The governing 
equations derived are different to previously published 
relations which considered the initial strains to be small.  

The theoretical predictions demonstrate that the Lamb wave 
phase velocity generally decreases with an increase in the 
magnitude of tensile stress. In the low frequency-thickness 
region, specifically below 3 MHz-mm, the S0 mode shows a 
relatively high sensitivity to the applied stress. Combining that 
with the ability of Lamb waves to propagate over large 
distances, the theoretical equations could form the basis for a 
non-destructive stress measurement technique in plate-like 
structures.  
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