Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130075

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450

References:


[1] Z. Yang, D. Lu, W. Hu, Y. Zheng, X. Gao, Q. Guo, “Propagation of optical beams in strongly nonlinear media”, Phys. Lett. A, pp. 4007-4013, 2010.
[2] M. A. Bandres and M. Guizar-Sicairos, Paraxial group, Opt. Lett. 34 (2009) 13.
[3] A. Keshavarz, G. Honarasa, “Propagation of Ince-Gaussian beams in strongly nonlocal nonlinear media using paraxial group”, World scientific, Vol. 23, No. 3, pp. 1450035-45, 2014.
[4] L. W. Casperson , D. G. Hall, A. A. Tovar, “Sinusoidal-Gaussian beams in complex optical systems”, J. Opt. Soc. Am. A., pp. 143341–8, 1997.
[5] L. W. Casperson , D. G. Hall, A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems” J. Opt. Soc. Am. A., pp. 15954–61, 1998.
[6] R. Chen, Y. Ni, A. Chu, “Propagation of a cos-Gaussian beam in a Kerr medium”, Optics & Laser Technology, vol. 43, no. 3, pp. 483–487, 2011.
[7] A. A. Tovar, L. W. Casperson, “Production and propagation of Hermite sinusoidal-Gaussian laser beams”, J. Opt. Soc. Am. A, vol. 15, no. 9, pp. 2425–2432, 1998.
[8] J. P. Gordon, R. C. Leite, R. S. Moore, S. P. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. Vol. 36, no. 1, pp. 3–8, 1965.
[9] D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium”, Phys. Rev. A, Vol. 48, 4583-4587, 1993.
[10] B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A.J. Agranat, “Nonlinear Optical Diffraction Effects and Solitons due to Anisotropic Charge-Diffusion-Based Self-Interaction”, Phys. Rev. Lett., Vol. 82, no. 8, pp. 1664-1669, 1999.
[11] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S.Stringari, “Theory of Bose-Einstein condensation in trapped gases”, Rev. Mod. Phys. Vol. 71, pp. 463-69, 1999.
[12] D. Q. Lu, W. Hu, and Q. Guo, “The relation between optical beam propagation in free space and in strongly nonlocal nonlinear media," Eur. Phys. Lett., Vol. 86, pp. 44004-10, 2009.