Search results for: Non-linear Modeling.
2925 The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets
Authors: E. Jomehzadeh, A.R. Saidi
Abstract:
In the present article, nonlinear vibration analysis of single layer graphene sheets is presented and the effect of small length scale is investigated. Using the Hamilton's principle, the three coupled nonlinear equations of motion are obtained based on the von Karman geometrical model and Eringen theory of nonlocal continuum. The solutions of Free nonlinear vibration, based on a one term mode shape, are found for both simply supported and clamped graphene sheets. A complete analysis of graphene sheets with movable as well as immovable in-plane conditions is also carried out. The results obtained herein are compared with those available in the literature for classical isotropic rectangular plates and excellent agreement is seen. Also, the nonlinear effects are presented as functions of geometric properties and small scale parameter.Keywords: Small scale, Nonlinear vibration, Graphene sheet, Nonlocal continuum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23362924 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations
Authors: Javad Abdalkhani
Abstract:
Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13052923 A Modification on Newton's Method for Solving Systems of Nonlinear Equations
Authors: Jafar Biazar, Behzad Ghanbari
Abstract:
In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.
Keywords: System of nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15932922 On the Approximate Solution of a Nonlinear Singular Integral Equation
Authors: Nizami Mustafa, C. Ardil
Abstract:
In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.
Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19232921 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22062920 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6132919 Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator
Authors: Md. Alal Hosen
Abstract:
In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x1/3. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x1/3 force nonlinear oscillator but it is also useful for many other nonlinear problems.
Keywords: Approximate solutions, Harmonic balance method, Nonlinear oscillator, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312918 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation
Authors: A. Keshavarz, Z. Roosta
Abstract:
In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.
Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8612917 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17262916 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations
Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat
Abstract:
Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19122915 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312914 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand
Abstract:
In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.
Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18742913 Internal Surface Measurement of Nanoparticle with Polarization-interferometric Nonlinear Confocal Microscope
Authors: Chikara Egami, Kazuhiro Kuwahara
Abstract:
Polarization-interferometric nonlinear confocal microscopy is proposed for measuring a nano-sized particle with optical anisotropy. The anisotropy in the particle was spectroscopically imaged through a three-dimensional distribution of third-order nonlinear dielectric polarization photoinduced.Keywords: nanoparticle, optical storage, microscope
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13642912 Modeling Hybrid Systems with MLD Approach and Analysis of the Model Size and Complexity
Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh
Abstract:
Recently, a great amount of interest has been shown in the field of modeling and controlling hybrid systems. One of the efficient and common methods in this area utilizes the mixed logicaldynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system by using the MLD framework. Comparing the model size of the three-tank system with that of a two-tank system, it is deduced that the number of binary variables, the size of the system and its complexity tremendously increases with the number of tanks, which makes the control of the system more difficult. Therefore, methods should be found which result in fewer mixed-integer inequalities.Keywords: Hybrid systems, mixed-integer inequalities, mixed logical dynamical systems, multi-tank system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17592911 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18142910 Geometric and Material Nonlinear Analysis of Reinforced Concrete Structure Considering Soil-Structure Interaction
Authors: Mohamed M. El-Gendy, Ibrahim A. El-Arabi, Rafik W. Abdel-Missih, Omar A. Kandil
Abstract:
In the present research, a finite element model is presented to study the geometrical and material nonlinear behavior of reinforced concrete plane frames considering soil-structure interaction. The nonlinear behaviors of concrete and reinforcing steel are considered both in compression and tension up to failure. The model takes account also for the number, diameter, and distribution of rebar along every cross section. Soil behavior is taken into consideration using four different models; namely: linear-, nonlinear Winkler's model, and linear-, nonlinear continuum model. A computer program (NARC) is specially developed in order to perform the analysis. The results achieved by the present model show good agreement with both theoretical and experimental published literature. The nonlinear behavior of a rectangular frame resting on soft soil up to failure using the proposed model is introduced for demonstration.Keywords: Nonlinear analysis, Geometric nonlinearity, Material nonlinearity, Reinforced concrete, Finite element method, Soilstructure interaction, Winkler's soil model, Continuum soil model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26652909 A Discrete Choice Modeling Approach to Modular Systems Design
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20202908 Nonlinear Analysis of Shear Wall Using Finite Element Model
Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam
Abstract:
In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.
Keywords: Finite element, large displacements, materially nonlinear, shear wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17532907 Dynamics and Control of a Chaotic Electromagnetic System
Authors: Shun-Chang Chang
Abstract:
In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.
Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15982906 Revealing Nonlinear Couplings between Oscillators from Time Series
Authors: B.P. Bezruchko, D.A. Smirnov
Abstract:
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12652905 Recent Trends in Nonlinear Methods of HRV Analysis: A Review
Authors: Ramesh K. Sunkaria
Abstract:
The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value <30%. This may be due to considering the RR-interval series as stationary and re-sampling them prior to their use for analysis, whereas actually it is not. This paper reviews the non-linear methods of HRV analysis such as correlation dimension, largest Lyupnov exponent, power law slope, fractal analysis, detrended fluctuation analysis, complexity measure etc. which are currently becoming popular as these uses the actual RR-interval series. These methods are expected to highly accurate cardiac health prognosis.Keywords: chaos, nonlinear dynamics, sample entropy, approximate entropy, detrended fluctuation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23512904 Control of Pendulum on a Cart with State Dependent Riccati Equations
Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha
Abstract:
State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30862903 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System
Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh
Abstract:
The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15892902 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling
Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai
Abstract:
This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.
Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24192901 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5652900 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers
Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici
Abstract:
In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.Keywords: Inverted pendulum, model predictive control, swingup, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21932899 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator
Authors: M. Pala Prasad Reddy, Jeevamma Jacob
Abstract:
Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.
Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29152898 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind
Authors: jianhua Hou, Changqing Yang, and Beibo Qin
Abstract:
A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.
Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14012897 Modeling and Stability Analysis of Delayed Game Network
Authors: Zixin Liu, Jian Yu, Daoyun Xu
Abstract:
This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.
Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14382896 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal
Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga
Abstract:
In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.
Keywords: OFDM, TWTA, nonlinear distortion, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678