
Simulation of the Performance of Novel Nonlinear 
Optimal Control Technique on Two Cart-inverted 

Pendulum System  

 
Abstract—The two cart inverted pendulum system is a good 

bench mark for testing the performance of system dynamics and 
control engineering principles. Devasia introduced this system to 
study the asymptotic tracking problem for nonlinear systems. In this 
paper the problem of asymptotic tracking of the two-cart with an 
inverted-pendulum system to a sinusoidal reference inputs via 
introducing a novel method for solving finite-horizon nonlinear 
optimal control problems is presented. In this method, an iterative 
method applied to state dependent Riccati equation (SDRE) to obtain 
a reliable algorithm. The superiority of this technique has been shown 
by simulation and comparison with the nonlinear approach. 
 

Keywords—Nonlinear optimal control, State dependent Riccati 
equation, Asymptotic tracking, inverted pendulum  

I. INTRODUCTION 
HE inverted pendulum is a classic problem in dynamics  
and control theory and is widely used as a benchmark for 
testing control algorithms (Nonlinear controller, PID 

controllers, neural networks, fuzzy control, genetic algorithms, 
etc). The problem of achieving asymptotic tracking of this 
system has been well studied in literature [1].for an advance 
study the problem of asymptotic tracking in a nonlinear 
system with nonhyperbolic zero dynamics, or what is the 
same, nonhyperbolic internal dynamics, Devasia ([3], [4]) 
added an extra cart of the same mass (M) to the one-cart with 
an inverted-pendulum system, resulting in a two-cart with an 
inverted-pendulum system, as shown in Fig. 1. The system 
consists of two elastically connected carts. An inverted 
pendulum is placed on the first cart and it  is freely hinged to 
the cart, which is free to move on a horizontal plane while the 
input is the force F acting on this cart. The equation of the 
motion of the two-cart with an inverted-pendulum system is as 
follows: 

0)(
0)sincos(

)()sincos()(

122

1

121
2

1

=−+
=−+

−+=+−++

ηηη
θθθη

ηηηθθθθη

KM
glm

KubmlmM

&&

&&&&

&&&&&&
 (1) 

 
B. Baigzadeh is with the Marine Engineering Faculty, Chabahar Maritime 
University, Chabahar ,Iran (e-mail: Baigzade@cmu.ac.ir). 
V.Nazarzehi  is with the Marine Engineering Faculty, Chabahar Maritime 
University, Chabahar ,Iran (corresponding author to provide phone:098-
9153454568; fax:098-5452221025; e-mail: nazarzehi@cmu.ac.ir). 
H.Khaloozadeh is with the Electrical Engineering Department , K. N. Toosi 
University ,Tehran,Iran, (e-mail: H_Khaloozadeh@kntu.ac.ir). 

 
Fig. 1 A two-cart with an inverted-pendulum system [2] 

where 
M  mass of the cart; 
K  is the spring constant 
m  mass of the block on the pendulum; 
l    length of the pendulum; 
g   acceleration because of gravity; 
b   coefficient of viscous friction for motion of the cart; 
θ   angle the pendulum makes with vertical; 

1η   position of the first cart cart; 

2η  is the position of the second cart 
u   applied force. 

 
The problem of asymptotic tracking of the two-cart with an 

inverted-pendulum system to a class of sinusoidal reference 
inputs is actually solvable by the standard output regulation 
theory [1]. Moreover, an approximation method for 
calculating the center manifold equation associated with the 
output regulation problem for general nonlinear systems is 
given. This approach does not rely on the hyperbolicity 
condition and, hence, apply to a large class of nonlinear 
systems. Finally, an approximation control law is synthesized 
and its performance is illustrated through computer simulation 
[2]. A numerical method to solve the so-called regulator 
equation was presented in [5].The method is analyzed to 
obtain theoretical estimates of its convergence and it is tested 
on an example of the “two-cart with an inverted pendulum” 
system. In this paper for improving the problem of asymptotic 
tracking, a novel method for solving finite-horizon nonlinear 
optimal control problems is presented. The performance of 
this technique has been shown by simulation and comparison 
with nonlinear controller method. The problem of asymptotic 
tracking is to design a state feedback control law of the form u 
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to locally stabilize the closed-loop system and to achieve zero 
tracking error asymptotically, i.e., to achieve 
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The works have been done in nonlinear optimal control  
were based to simplified assumption or based on usage of 
series with side iterative process such as Chebyshev series([6], 
[7])  power series[8] and Valesh series[9] or successive 
approximation method ([10], [11]). These techniques are 
approximated and based on initial guess with the linear view 
to the problem. The idea of initial condition estimation for        
co-states introduce another method for solving Hamiltonian 
systems([12]) that because of high sensitivity of co-states to 
initial condition, its application has been limited to stable 
nonlinear systems. 

Besides using direct optimization and estimation methods 
based on well-known series, there is a different group of 
techniques derived from indirect optimization and using 
Riccati equation besides iterative process ([13], [14], [15]). 
The idea has been used in this paper is based on the previous 
procedure.  

In this research unlike the previously work that use Riccati 
equations that is validated for linear systems, we used a 
nonlinear Riccati structure without approximation.  

The paper is organizes as follows, in first section to explain 
the above ideas precisely a novel method for solving finite 
horizon nonlinear optimal control problems is presented. In 
section 3 the performance of method is illustrated through 
computer simulation. Comparison between the standard output 
regulation theory method and our new method is given in 
Section 4. Conclusions are drawn in the final section.  

II.  FINITE HORIZON NONLINEAR OPTIMAL CONTROL 
 
Optimal tracking problem is finding an optimal control law 

that forces the plant to maintain the system output as close as 
possible to the desired output. Suppose we have a plant with 
the following affine dynamics: 

uxgxfx )()( +=&                                                               (3) 
Cxy =                                                                                    (4) 

In which nRf ∈  and mnRg ×∈  are supposed to be 
continuous and differentiable functions satisfying the 
Lipschitz conditions. rRy∈  and nrRC ×∈  are in sequence 
the output and the output matrix  of the system. Quadratic cost 
functions are usually used for such problems: 
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 Where rrR
f

tP ×∈)(  ، rrRQ ×∈  are positive semi definite 

matrices and mmRR ×∈  is positive definite matrixes, which 
are determined by the designer. 
 According to necessary conditions for optimality theorem 
[12] and the cost function of (5), the optimal control problem 
of such systems is found as: 
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λ)(0 xgRu T+=                                                                   (8) 
In the cases of free final state and fix final time, given 

ot and )( otx , the boundary conditions are: 
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In (10), the boundary conditions of co-states are determined 
according to the cost function. To solve the two-point 
boundary value problem specified by (9) and (10), the sweep 
method shall be used [16], i.e. the following linear condition is 
supposed to hold between )(tx  and )(tλ  in the interval 

( ],[ 0 ftt ): 

))()()(()( trtCxtPCt T −=λ                                    (11) 

 where nnRtP ×∈)(  is positive definite. To obtain the known 
form of Riccati equation )(xf  could be rewritten without the 
loss of generality in the following form: 

xxAxf )()( =                                                           (12) 

 where nnRxA ×∈)(  is a continuous and differentiable matrix 
function. Differentiating (11) and substituting (6), (7) and (8) 
by defining )(tS  and )(tν as follow: 

PCCtS T=)(                                                                       (13) 

)()()( trtPTCt =ν                                                               (14) 
the optimal tracking problem leads to the numerical solution 
of the following equations: 
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There is a difficulty to solve the equations (16) and (17). 
Because These equations are dependent on states, but we have 
not the state values in the whole interval (i.e. ],[ 0 fttt∈ ). To 
overcome this difficulty we solve the above equations by an 
iterative procedure. At first we obtain the state values in the 
whole interval for the unforced system: 

)0)0(,ot(t             )( xtxxfx =≥=&                                 (19) 
Now we can solve the equations (16) and (17), thus we have 
)(tu from (18). Applying this control signal to the system (i.e. 

the equation (15)), we obtain new state values and again 
solving the equations (16) and (17). This iterative procedure 
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will be continued until the expected performances will be 
achieved. 

In this technique each iteration is completely based on the 
previous one that was not considered in last algorithm.  In 
reality according to this method there is dynamic in both 
aspects, index (which is related to iterative process) and time 
aspect. 

The method presented in ([13], [15]) parameters )(tS  and 
)(tν  in each iteration made based on )(tS  and )(tν  that on 

iteration and system state in last iteration whereas in new 
algorithm parameters )(tS  and )(tν  in each iteration derived 
from )(tS  and )(tν  and system states in preceding  iteration 
,thus this changes causes dynamic in both aspects (iteration 
and time) although in earlier method there is a dynamic only 
in time dimension likewise in this technique the Riccati 
equation is solvable in nonlinear form. 

III. SIMULATION 
We illustrate our approach performance on a two-cart 

system with an inverted pendulum. With the choice of the 
state variables as  11 η=x , 12 η&=x , θ=3x , θ&=4x , 

24 η=x , 25 η&=x  and  the control input )()( tFtu = , the 
state space equations of system are : 
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The output of the system is )()( 1 txty =  (or  )(
1

tη ) .We will 

consider asymptotic tracking of the output )(ty  to a sinusoid 

input ( tAtyd ωsin)( =    with values of the amplitude 1=A  
and the frequency 1=ω  ). To achieve this goal, the choice of 
cost function could be:  
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)(xA  and )(xg are selected as shown in (22) and (23), at the 

bottom of the page, Where 
3

33 sin
)(sinc

x
xx

=
π

 and 

3
2

3 sin)( xmMx +=γ .  
System parameters were chosen, for the simulation, as 

m

N
K 10= , Kgm 051.0= , KgM 378.1= , ml 325.0= , 

s

Kg
b 98.12=  and 

28.9
s

m
g = . Performance of our control 

law has been shown in figure 2. 

 
Fig. 2 tracking performance of optimal control 

As shown in this figure the tracking signal has not good 
performance. Since Finite horizon optimal control is designed 
offline, hence for improving the performance of tracking 
signal its cost function is chosen as: 

(
)dtutx

txJ x
22

2
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2
1 300000

+−+

−= +∫
                    (24) 

Because of closed relationship
 
between

 
1η

 
and

 
2η ,to

 
reach a 

better tracking a part of weight
 
of

 
cost function

 
is allocated

 
to

 
5x

 
with this work in addition

 
to maintain the inverted 

pendulum in 
⎥⎦
⎤

⎢⎣
⎡ −

2
,

2
ππ  (Its permitted region) a better result 

can achieved, As shown in figure 3.
 

IV. COMPARISON OF RESULTS 
The purpose of this section is to provide a comparative 

study of the new method proposed by this paper and the well-
known method based on computation of undetermined 
coefficients of the Taylor expansion. In order to compare the 
performance of novel optimal control approach with a Huang 
nonlinear control the output of model is presented in figure 3 
which the optimal control method has better performance in 
transient response. 

Fig. 4 shows the inverted pendulum position signal. As 
shown in this figure for both controllers, its position is in 

allowed interval (
⎥⎦
⎤

⎢⎣
⎡ −

2
,

2
ππ ). For having a better tracking in 

transient state in optimal case the inverted pendulum's 
deviation related to a vertical position  is more than nonlinear 
one. Moreover big deviation in transient response decrease the 
system nonminimum phase   tracking response in comparison 
with nonlinear case. 

 
Fig. 3 Comparison of the tracking performance of the optimal and 

nonlinear controllers 

 
.Fig. 4 Inverted pendulum position 

 
Fig. 5 Error signals 
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Figure 5 shows the error signal between reference values and 
actual values for both cases. The error signal in optimal case is 
smaller than nonlinear case especially in transient response. 
Finally, to have an exact comparison between two techniques, 
the error norms are presented in table 1.  
 

TABLE I COMPARISION THE PERFORMANCE OF TWO METHODS 

 Optimal control Nonlinear control 

1
e  0.3527 1.6524 

2
e  1.0562 4.0332 

∞
e  0.2862 1.0982 

Transient 
response good bad 

V. CONCLUSIONS 
In this paper for improving the problem of asymptotic 

tracking of the two-cart system with an inverted pendulum a 
novel optimal control technique has been presented. The 
performance of this technique in tracking a sinusoid reference 
signal has been shown by simulation. Its superiority is 
presented by comparison with nonlinear controller by 
comparing their tracking performance based on different 
performance indices. 
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