Search results for: Largest Lyapunov exponent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 448

Search results for: Largest Lyapunov exponent

388 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3489
387 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory

Authors: Ping He

Abstract:

This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.

Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
386 Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller

Authors: Behrooz Rezaie, Zahra Rahmani Cherati, Mohammad Reza Jahed Motlagh, Mohammad Farrokhi

Abstract:

In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.

Keywords: Chaotic system, Fuzzy control, Lorenz equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
385 Turing Pattern in the Oregonator Revisited

Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss

Abstract:

In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.

Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
384 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
383 Implementation of an Associative Memory Using a Restricted Hopfield Network

Authors: Tet H. Yeap

Abstract:

An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.

Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
382 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays

Authors: I. Davies, O. L. C. Haas

Abstract:

In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.

Keywords: Infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
381 Sliding Mode Control Based on Backstepping Approach for an UAV Type-Quadrotor

Authors: H. Bouadi, M. Bouchoucha, M. Tadjine

Abstract:

In this paper; we are interested principally in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints in order to develop a new control scheme as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation. After, the use of Backstepping approach for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller is developed in order to ensure Lyapunov stability, the handling of all system nonlinearities and desired tracking trajectories. Finally simulation results are also provided in order to illustrate the performances of the proposed controller.

Keywords: Dynamic modeling, nonholonomic constraints, Backstepping, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5894
380 New Delay-Dependent Stability Criteria for Neural Networks With Two Additive Time-varying Delay Components

Authors: Xingyuan Qu, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria of neural networks (NNs) with two-additive time-varying delay compenents is investigated. The relationship between the time-varying delay and its lower and upper bounds is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some improved delay stability criteria for NNs with two-additive time-varying delay components are proposed. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

Keywords: Delay-dependent stability, time-varying delays, Lyapunov functional, linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
379 Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach

Authors: M. Kidouche, H. Habbi, M. Zelmat

Abstract:

In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.

Keywords: Composite system, Connective stability, Lyapunovfunctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
378 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays

Authors: Guang Zhou, Shouming Zhong

Abstract:

In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.

Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
377 Stability of a Special Class of Switched Positive Systems

Authors: Xiuyong Ding, Lan Shu, Xiu Liu

Abstract:

This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the existence of a common LCLF for arbitrary finite sets composed of continuous- and discrete-time positive linear timeinvariant( LTI) systems. Finally, a simple example is provided to illustrate the implication of our results.

Keywords: Linear co-positive Lyapunov functions, positive systems, switched systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
376 An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays

Authors: Ozlem Faydasicok, Sabri Arik

Abstract:

This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.

Keywords: Stability Analysis, Neutral-Type Neural Networks, Time Delay Systems, Lyapunov Functionals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
375 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
374 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
373 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
372 New Approaches on Exponential Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to study the exponential stability problem for neural networks with discrete and distributed time-varying delays.By constructing new Lyapunov-Krasovskii functional and dividing the discrete delay interval into multiple segments,some new delay-dependent exponential stability criteria are established in terms of LMIs and can be easily checked.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.

Keywords: Neural networks, Exponential stability, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
371 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays

Authors: Shu Lü, Shouming Zhong, Zixin Liu

Abstract:

In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
370 Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control

Authors: Jan Erik Stellet

Abstract:

This article presents a detailed analysis and comparative performance evaluation of model reference adaptive control systems. In contrast to classical control theory, adaptive control methods allow to deal with time-variant processes. Inspired by the works [1] and [2], two methods based on the MIT rule and Lyapunov rule are applied to a linear first order system. The system is simulated and it is investigated how changes to the adaptation gain affect the system performance. Furthermore, variations in the reference model parameters, that is changing the desired closed-loop behaviour are examinded.

Keywords: Adaptive control systems, Adaptation gain, MIT rule, Lyapunov rule, Model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
369 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation

Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang

Abstract:

In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.

Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
368 Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes

Authors: M. A. Beisenbi, N. M. Kissikova, S. E. Beisembina, S. T. Suleimenova, S. A. Kaliyeva

Abstract:

The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector-functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system.

Keywords: Gradient-velocity method of Lyapunov vector-functions, hyperbolic umbilic, self-organizing control system, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
367 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
366 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
365 Controller Synthesis of Switched Positive Systems with Bounded Time-Varying Delays

Authors: Xinhui Wang, Xiuyong Ding

Abstract:

This paper addresses the controller synthesis problem of discrete-time switched positive systems with bounded time-varying delays. Based on the switched copositive Lyapunov function approach, some necessary and sufficient conditions for the existence of state-feedback controller are presented as a set of linear programming and linear matrix inequality problems, hence easy to be verified. Another advantage is that the state-feedback law is independent on time-varying delays and initial conditions. A numerical example is provided to illustrate the effectiveness and feasibility of the developed controller.

Keywords: Switched copositive Lyapunov functions, positive linear systems, switched systems, time-varying delays, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
364 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.

Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
363 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

Authors: I. Zamani, M. H. Zarif

Abstract:

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
362 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses

Authors: Xiaomei Wang, Shouming Zhong

Abstract:

In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.

Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
361 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Authors: Ni Ni Soe , Masahiro Nakagawa

Abstract:

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
360 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay

Authors: Yunquan Ke, Chunfang Miao

Abstract:

In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.

Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
359 Performance of Soft Handover Algorithm in Varied Propagation Environments

Authors: N. P. Singh, Brahmjit Singh

Abstract:

CDMA cellular networks support soft handover, which guarantees the continuity of wireless services and enhanced communication quality. Cellular networks support multimedia services under varied propagation environmental conditions. In this paper, we have shown the effect of characteristic parameters of the cellular environments on the soft handover performance. We consider path loss exponent, standard deviation of shadow fading and correlation coefficient of shadow fading as the characteristic parameters of the radio propagation environment. A very useful statistical measure for characterizing the performance of mobile radio system is the probability of outage. It is shown through numerical results that above parameters have decisive effect on the probability of outage and hence the overall performance of the soft handover algorithm.

Keywords: CDMA, Correlation coefficient, Path loss exponent, Probability of outage, Soft handover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727