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New Approaches on Exponential Stability Analysis
for Neural Networks with Time-Varying Delays

Qingging Wang, Baocheng Chen, Shouming Zhong

Abstract—In this paper, utilizing the Lyapunov functional
method and combining linear matrix inequality (LMI) techniques
and integral inequality approach (IIA) to study the exponential
stability problem for neural networks with discrete and distributed
time-varying delays.By constructing new Lyapunov-Krasovskii
functional and dividing the discrete delay interval into multiple
segments,some new delay-dependent exponential stability criteria
are established in terms of LMIs and can be easily checked.In order
to show the stability condition in this paper gives much less
conservative results than those in the literature,numerical examples
are considered.

Keywords—Neural networks,Exponential stability, LMI approach,
Time-varying delays.

I. INTRODUCTION

EURAL networks have attracted many researchers
Nattention during the past decades and have found
successful applications in many areas,such as automatic
control,signal processing,model identification,combinatorial
optimization,and so on[1,2]. However,the occurrence of time
delays is unavoidable in some of these applications,and it
may cause instability of neural networks.Therefore,stability
analysis of delayed neural networks has been extensively
investigated by many researchers. Now, many sufficient
conditions ensuring global asymptotic stability and global
exponential stability for delayed neural networks have been
derived [3-30].The main concern in delayed-dependent
stability analysis for delayed neural networks is to enlarge
the feasibility region of stability criteria to get the maximum
allowable bound of time delays for guaranteed the stability.
some researchers found many new approaches on stability
analysis for neural networks with time-varying delay, such as
introducing new Lyapunov functional,dividing delay interval
and so on.

Motivated by this mentioned above,in this paper, the
exponential stability problem for neural networks with both
time-varying and distributed delays is considered,two new
delay-dependent stability criterion for neural networks with
time-varying delays will be proposed by dividing the delay

interval [0,¢<] into [0, %],[%ﬂm(t)],[c(t),%g(t)],[ﬁ;(t)x],
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constructing new Lyapunov-Krasovskii functional which
contains some new integrals,and introducing f(y(t — §)) in
vector &(t),which are rarely considered in other literature
.The obtained criterion are less conservative because LMI
approach has been developed to deal with the problem of
globally exponential stability for neural networks with
time-varying delays. Finally, numerical examples are
presented to illustrate the effectiveness of our results.

II. PROBLEM STATEMENT

Consider the following neural networks with discrete and
distributed time-varying delays:
13
2(t)=—CHAt)+Ag(2(t))+Bg(z(t— () +D | g(2(s))ds+Iy
t—p
z(t) = ®(t),t € [—h,0]
ey

where 2(t) = [21(t), 22(t),...,2,(t)]T € R™ is the neuron
state vector.g(2(t) = [91(z1(8)), g2(z2(8)). -, g (2 ()]
denotes the neuron activation function ,and Iy = [y, Io, .. .,
I,)T € R™ is a constant input vector,C' = diag{c;} € R" is
a positive diagonal matrix , A = (a;j)nxn € R™ is the
connection weight matrix, B = (bjj)nxn € R"™ .and
D = (dij)nxn € R"™ are the delayed connection weight
matrices,the initial vector ®(¢) is bounded and continuous on
[—h,0],where h = max{p,<}.

The following assumptions are adopted throughout the paper.
Assumption 1: The delay ¢(¢) is time-varying continuous
function and satisfies:

0<¢(t)<qs(t)<pu<l 2
Assumption 2: Each neuron activation function g¢;(-),7 =
1,2,...,n,in (1) satisfies the following condition:

i < 2200 < b vape Rt 5 S

where v, ,'yi+ , 0 1,2,...,n are constants,and matrices
Iy = diag{v; 72,V 1, T2 = diag{ri 75 - -
Based on Assumption 1-2, it can be easily proven that there
exists one equilibrium point for (1) by Brouwer's fixed-point
theorem. Assuming that z* = [27,25,...,2%]|Tis the
equilibrium point of (1) and using the transformation
y(+) = z(+) — z*,system (1) can be converted to the following
system :

t

() =—=Cy(t)+Af (y()) +B f (y(t—=(1)))+D - f(y(s))ds
“
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where y(t) = [y1(t), 12(t), .. ..y (], F(y (1) = [F1(1(2)),
f2_(y12(;))7 s Fn(yn )T fi(wi () = giz:() +20) —gi(2)),
Fr?)m,E7q(4’) fl() satisfies the following condition:

TS file)

o
Due to the disturbance frequent occurs in many various
applications,and p may be distributed time-varying delays ,so
by translating matrices A, B, C, D and constant p to function
A(t), B(t),C(t), D(t) and p(t), respectively,we have

§(8) =—C(O)y(t) + AW F (1) + B (y(t— (1))
(1) / fuspds O

—p(t)

Assumption 3: p(t) is the time-varying continuous function
and satifies: 0 < p(t) < p.

Assumption 4: Setting function A(t) = A+ AA(¢), B(t) =
B+ AB(t),C(t) = C+ AC(t), D(t) = D + AD(t), where
AA(t), AB(t), AC(t), AD(t) are unknown constant matrices
respresenting time-varying parametric uncertainties, and are of
linear fractional forms:

[AC(t), AA(t), AB(t), AD(t)]=GF (t)[E., Ea, Ep, E4]

<AhVa#0,i=1,2,....n. ®)

(7
with
FTt)F(t) <T ®)
Definition 1 The equilibrium point 0 of system (7) is said to

be globally exponentially stable if there exist £ > 0 and v > 0
such that

ly(®)]] < e~

su t)||,vVt >0
w o) ©

Lemma 1 [9].The following inequalities are true :
vi(t)

0= [ (fils) =27 s)ds < ()= ()0
0

yi(t)
0< / (v 5= fi(5))ds < (v i(8) — s (£)))wi0),
(10)

Lemma 2 [10]. For any constant matrix @, S € R™*", Q =
QT > 0,8 = ST, the following inequality hold:

o[ v e)Qus)as

. 11
< _ ft—p(t) y(s)ds ! [Q S} f:_p(t) y(s)ds o
- t=r(®) y(s)ds * Q =) y(s)ds

t—p t—p

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed

and two less conservative delay-dependent stability criterion

are obtained. First, we take up the case where

AA(t) = 0,AB(t) = 0,AC(t) = 0,AD(t) = 0 in system
(7) as follows:

t

y(t)=—Cy(t)+Af(y(t))+ Bf(y(t—<(t))) + D fly(s))ds

t=p(t)
(12)
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S

Denote
&) =l (1,9 (= )y (=9, y" (¢ = <(1), FT (y(®)),

I = 50 7t = ) £yt = <),
t t—p(t)
[ rnds [ )

—p(t) t—p
Theorem 1 Given that the Assumption 1-3 hold, the system
(12) is globally exponentially stable with the exponential
convergence rate index k if there exist symmetric positive

Gt G2 Giz Gu
. . Gao Gaz Goy s
definite matrices «  Gas Gu ,PQit =
* * * G44
1,2,3,4,R;,i = 1,2,...,5,positive diagonal matrices
W13W27W37W47A = diag{)‘lvAQM"v)‘n}aA =
diag{d1, 92, ..., 0, },and symmetric matrix S;,i =1,2,...,7
such that the following LMIs hold:
_Rl SL .
B Rz} >0,i=1,4,5. (13)
_Rg Sz .
B RJ >0,i=2,6,7. (14)
(E NTZ
B —Z} <0 (15)
[F NTZz
B —Z] <0 (16)
where
N = [—C 00 0 AO0OO0O B D O]
S
Z == §(R2 + R4)
[Eyy Ei2 0 0 Ei5 Eg 0 Eig Eig 0 ]
x Koy Foz 0 Eas Eos Eor 0 0 0
* * E33 0 0 E36 E37 0 0 0
* * * E44 0 0 0 E48 0 0
= * * * * E55 E56 0 E58 E59 0
T % * * * x Fgg Fgr 0 0 0
* * * * * x* FEmr 0 0 0
* * * * * * x* FEgg 0 0
* * * * * * * x  Fgg FEg 19
| * * * * * * * * * ElO,lO_
[Fiy Fio, 0 0 Fi5 Fig 0 Fig Fig 0 ]
* F22 F23 0 F25 F25 F27 0 0 0
* * F33 0 0 F36 F37 0 0 0
* o« x Iy 0 0 0 Fyig O 0
po|* ox ok % Fss5 Fs6 0 [Fss Fs9 0O
Tlx ox % x % Fgg Fgr 00 0
x % % ok x x Frr 0 0 0
* * * * * * x Fgg 0 0
* * * * * * * *  Fog Fy10
| * * * * * * * * * F10,10_
299 1SN1:0000000091950263
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En=2kP —2PC — 4k A +4kF2A +2IMAC - 21,AC0 Proof: Construct a new class of Lyapunov functional

+G11+Q1+Qs+ Qs+~ (R1 + R3) +e 78 candidate as follow:
7
—2Ih AT
e V) =Y Vilu)
i=1
By =G

Vi(ye) = €"y" (1) Py(t)
Eis = PA+2kA — 2kA — T AA +TyAA — CA+ CA

+ Gi3+ Wi (Ty +Ty) 1(t)

Valy) = 2e2ktz / 77 5)+8 (s fi(s)lds
Ei¢ =G, B3 =PB—-T1AB+ T'yAB

G G2 Gz Gus

E19 :PD*]._‘lADﬁ»FQAD t % G G G
2ks, T 22 23 24
Va(wr) / RO D O
E22 = Ggg — €7k<G11 — 67]«54 + 672]“52 — 2F1W3F2 * * * G44

Ey3 = —e " G1a, Bas = Ga3
n"(s)=[y"(s) yT(s—35) [Tyls) fTy(s— %))
Ess=Gay — e "Gz + W3(T1 +Tg), BEar=—e "Gy

+

/ " 2Ics T( )Qly(s)ds—l—/ 2ks T( )ng(s)ds
t— 52 t—c(t)

=
—
<
&
~—~
I

Esy=—e " Gog—e 2 Gy — 20 W'y, E36=—¢ "Gy

t
+ / e***y" (5)Qsy(s)ds
Esr = —e " Gay + Wy(T1 +Ty) ¢—Sts

t
2ks ¢T d
By = —(1 —p)e 2k Qy — 21 Wal'y — e *5(S; — Sy) - /tg(t) e W(e)Quf (y(e))ds

By =Wo(T1 4T ot _ _

18 =Wally +T2) Vo= [ ) Rayto) 7 (5) R s
—s/t+o

Es5=2AA—2AA+G33+Qu+p*Rs —2W1, Bsg =G4

-5 pt
Eys = AB — AB, Egy = AD — AD Volw)=( [ TRyl +7 (o) Rage) st

Ego = Gaa — e " G35 — 2W3, Egr = —e "Gy 0t
Vel =p [ [Ty Raf(y(s) s
—p Jt40
__ —ks _ —_(1_— —2k¢ _
Err=—e""Gyq—2Wy, Egg=—(1 — p)e” =" Qs —2W5 Then, taking the time derivative of V(t) with respect to t along

the system (12) yield
Egg=—e 2" Ry Eg19=—e 2S5, E1910=—e ¥ R;

V(yt) = Z Vz(yt)

Fy1 =2kP—2PC—4kI', A+4kF2A+2F AC—2T,AC pt
+ G+ Q1+ Q2+ Qs+ = (R1+R3)+e k< Sy . . ot 1
Vi(ye) = 2k t)Py(t) + 2e t)Py(t 17
T WA 1(ye) ey () Py(t) +2e™y" (¢)Py(t) (17)
Fay=Goy—e FGry—e 7 S5+e 27 G — 20 WiT'y Va(ye) 47€€2kt2/ Xi(fi(s) =y 8)+0i(v; s~ fi(s))]ds
Fyg = —e "Gy — e 28, — 21, W, T, + 225 (T (y(#) — y" (T 1) Ag(1)
+ (" (O = fT(y(1)Ag(t)]
Fia=—(1— p)e 2k Qq— 2T WoT'y —e 2k (S, — S) < 4ke*R[(fT ( () — yT (H)T1)Ay(t)
All the other items in matrix F satisfies F;; # 0,we can get + (" (02 = 1 (y()) Ay(1)]
Fij = Eyj,i,5 =1,2,...,10. +2€2kt[fT(y(t))(A A)+yT (1) (T AT A)]y(t)

(18)
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G Gz Giz Gu P2 (y(t = ) Waf(y(t = <)) + 24" (t — )Wa(T
Valy) = e*tT(t) | £ 92 g” 224 n(t) +T2) f(y(t — <)) = 2y" (t = QT Walay(t —<)] > 0
* * 33 34 27)
* * * G44
Gi1 Gia Gz G (1) When 0 < ¢(t) < § ,we consider the following three zero
K-8, ¢ g) x  Goy Gag Goy n(t g) equalities with any symmetric matrix S1, S2, Sy :
- T2« o+ Gy G 2 ;
Lo e DT (1Sy(1) - o7 (¢ - (St - (1)
t 28
W o [ sl =0 .
) t—q(t)
Vi(ye) < e Iy" ()(@Q1 + Q2 + Qa)y(t) + f7 (y(1)Qaf (y(t))
t t (t—S S S
—a =Bty - Wyo ) DT (L~ ()it — (1)~ (1~ $)Sult — 5)
_ s(t) +¢ s(t)+¢ t=s(t) .
— = eyt Qe S0 2 [T sl =0
t=3

= (L= e yT(t = <(1)Qay(t — <(1))

e 2T (y(t — <())Qaf (y(t — <(1))]
(20)

+ 4" (t)Ray(t))

y" (s)Riy(s) + 5" () Ray(s))ds
@1

V() < 5 (y" (O Rsy(t) + 5" () Ray ()

k(=) /t (47 () Ray(s) + 57 (s) Rai(s))ds
- (22)
V7(yt) < 02€2kth(y(t))R5f(y(t))
— pe?k(t=r) S (y(s)Rs f(y(s))ds

< e 2fT (y(t)Rs f(y(t))

_e_Qkplft /() ds T{RS ]f () }
tt P(t) (y dS * Ry ftt pp(t)f( (S))
(23)

From (5), we can get that there exist positive diagonal matrices
Wy, Wy, W3, Wy such that the following inequalities holds:

R =2 (y()Wif (y(1) + 29" ()W (T1 + Ta) f(y(t))
— 2y ()T, Wi Tay(t)] > 0

(24)
M =2fT (y(t—c (1)) Waf(y(t—c())+2y" (t—(t)) Wa(y
+T2) f(y(t—<(t))) —2y" (t—s(t))D1 Walay(t—s(t))] = 0

(25)

PH-2fT (Yt = 5)IWaf (ylt = 3)) + 2" (¢ = 5)Wa(Dy

+ Do) f(y(t = 5)) = 29" (¢ = 5T Walay(t = 5)] = 0

(26)
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(29)

My (¢ — %)SQy(t - %) —y"(t =) Say(t =)

t—%
9 / YT (5)Sai(s)ds] = 0
t—¢ 30)

From (17)-(30),we can get

V() <eeT (8)(E+RT ZR)E(t)
f(lf%M@‘kgf@*?)w(t*?)
— e sy T (¢ — (t);g)Qs U g(t);g))]
oo [ B[ ] B
t=<() (s §
Senen [ o)
_ 2h-9) /t < { Eg] ﬁg Iij [ Eiﬂ *

(2) When 5 < ¢(t) < ¢,we consider the following three zero
equalities with any symmetric matrix S5, Sg, S7 :

HD YT () Ssy(t) —y" (0= 5)Ssylt = 3)

2

t (31)
i /t VT ()Ssi(s)ds] = 0
Ry T (1~ %)Sey(t— §> —y" (t=<(1)Sey(t—<(1))
9 /t _@ y" () S5 (s)ds) = 0
~ (32)
R [y (¢ =< (1) Sry(t =< (1) —y" (t=<)Sry(t—<)
(33)

t—(t)
—2/ yT(5)S7y(s)ds] = 0

t—
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From (17)-(27),and (31)-(33),we can get
V(ye) < M7 (1)(F + RTZR)&(1)

— =Bty - Doy - )
ey Tt ““%)ng Wrey
- [ [ R B

S
2
— S
2

e [ T2 Sl

_ g2k(t—) /t <@ [y(s)}T |:R3 57} [ y(s )} ds

i L)) | *x Raf [y(s)
Hence,combined with the Schur complement and (13)-(16), we
can obtain V (y;) < 0,this means the system (12) is guaranted
to be asymptotically stable for 0 < ¢(t) <¢,0 < p(t) < p,on
the other hand,we have the followings:

Vi(90) < Amaz(P)[Y(O0)[* < Aoz (P)  sup
h<s<

ly(s)11*
0
(34)

Va(yo) <2 { [ (4(0)) ~T1y(0)]"A+[T2y(0) — £ (5(0))"A} y(0)

§2/\maa(Fl*FQ)()‘maz(A)jL)‘maw(A)) Sup Hy< >||2
—h<s<0
(35)
0 Gi1 Gi2 Gizs Gu
G G G
Ve < T * 22 23 24 d
s < [ | TG G
* * * G44
Gi1 G2 Gis Gua
Goo Goz G
<12maT* 22 23 24 2
<SSO+ Pmaz| Gus Gas jlglfgol\y(S)II
* * % G44
(36)
where
v—llyag{lm |1t 1}
S
V4(y0) S (5/\max(Q1)+§)\maz (Q2)+§)\maz(Q3)
(37
+67* Amaa (Qa)) sup [ly(s)|?
—h<s<0
C
v5(y0)§§Amm(Rl) Sup_ Hy( )12
(38)
max RQ)/ / d8d9
3¢2
VG(?JO) 3 Amam(R3) Sup Hy( )||2
77, S (39)
s)dsdf

Amaz (Ra) /7:/
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According to 22Ty < 2TYx +4TYy with Y > 0
yT(s)y(s) < 4[)‘maz(CTC) +’72)‘max(ATA)+'Y2)‘maz(BTB)
+ 057 Amaz (DT D)) sup _[|y(s)|®
—h<s<0

(40)
0 0
Valon) < phmac(R) [ [ £ (05 F(y())dsad
342 o (41)
< 55 Amaa(Bs)_swp_ Iyl

According to (34)-(41),there exist a positive constant a,such
that

Viy) <« ()11

sup
—h<s<0

where
o = )\max(P) + 2)\ma1(rl - FZ)()\maz(A) + )\mam(A))
S
+ (5)\Tnu.1‘ (Ql) + g)\’mam (Q2) + C)"mal‘(QZi) + gfyz)‘nmz (Q4))
3¢2

2
+ %)\muz (Rl) + 7Amax(R3) + 2§2()\maz(CTc)

+ 7 Amaz (AT A) + ¥ Anaw (BT B) + p2 7 Anaw (DT D))
G111 Gi2 Giz Gy

3.2

Py 2 * G Gaz Gu
)\m(w RS 1 /\maw

+— (Rs)+<(1+77) s % s Gay

* * % G44

Furthermore , we have

V(yt) > 62kt)"rni'n(P)”y(t)H2

Then we can easily obtain

M Amin(P)ly(®)II* < sup_ IIy(S)II2

Which leads to
a —kt 2
) < ,/———e su S
ly(@®)] < Noin (P) —hg?go”y( )i

Thus by Definition 1,when the system (7) satisfies AA(t) =
AB(t) = AC(t) = AD(t) = 0 is exponentially stable with
convergence rate k,and the proof is completed. [ |

Based on Theorem I,we have the following result for
neural networks with time-varying.
Theorem 2 Given that the Assumption 1-4 hold, the system
(6) is globally exponentially stable with the exponential
convergence rate index k if there exist symmetric positive

definite matrices P, Hy, H,Q;,i = 1,2,3,4, R;,1 =
G G2 Giz Gus
* Gaa Gaz Go ... .
1,2,...,5, N « Gy Gy ,positive diagonal
* * * G44

matrices Wy, Wo, W3, Wy, A = dz’ag{)\l,)\g,...,)\n},A =

diag{d1,02,...,0n},and any symmetric matrix S;,7 = 1,2,
., 7 ,such that the following LMIs hold:
R1 SL .
{ . RJ >0,i=1,4,5. 42)
302 1SNI:0000000091950263
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Ry S >0,i=26,T. (43) Similarly,we can obtain that,when 0 < ¢(t) < 5,one can
L+ R obtain that
i V(y) < ek Q) + VT H Oy + 9 H, Y
B RT 2N so S O H, WL, H; (ye) [o ( (€ (115) 1 2 112 (tz)) o(t)
«  —H+GTzG  GTZG 0 0 —(1- %)(e—’“yT(t - %)Qly(t - %
* * * ~Hi 0 — eIy T (- SR Qay(t - =)
* * * * —Hs . 2 T 2
- (44) _ 2k(t-% / [?{(S)} [Rl 51} {?{(S)] ds
Jt—q(t) i(s) xR |Y(s)
[FnT ZN 3G 3G vl oy vl H) ks =5 Ty (s) TTR, S, y(s) ds
* —-H\+GTzG  GTZG 0 0 e luls) *  Ro| [9(s)
x x ~H,4+GTZG 0 0 |<0 s T
» % % —H, 0 _ o2k(t—=<) /t 2 {y(s)] {Rg 52} [y(s)} ds
L * * * * 7]-[2 t—c¢ y(S) * R4 y(s)
(45) where
where E +XTZX SG SG
Q= * -H,+G"ZG GTzG
Uy=[% 000 & 00 E 0 0 x * —Hy +G"ZG

when % < ¢(t) < ¢,one can obtain that

Vi) < " ()(Qa + VT H Uy + U HyWo)o(t)

=[5 000 B 000 B 0 —a =By - Wgue - )
_ t) +
) ey - g - L),
o [ R, S
—[P4+T5A-T1A—CZ,0,0,0,A—A+ZA, — ekt 2>/t_5 Bgzg] [*1 Rﬂ ngﬂ ds
0,0,ZB, ZD,0 s
] _ 2k(t—9) /t 2 |y(s) r Rs (s)
Proof: System (6) can be written as ity LU(S) * y(s)
§(t)==Cy(t)+Af (y(1))+Bf (y(t—s(1))) 2k(—0) /”‘” [y(S)r {Rg 7} {y(s)]
t e W) = y(s)
+D f(y(s))ds + G(p1(t) + (1))
tp(t) where
p1(t) = F(t)p2(t) F+xTZR 3G SG
t) = F(t)ga(t Qp = * -H, +G"ZG GTza
Q1() Ei )QQ() B » % —H2+GTZG
p2(t) = 7y(t) * 7f(y(t)) * Ebf(yt(t —<®) According to (42)-(45),then we can obtain V(yt) < 0.0n the
E. E, other hand
t)=—uy(t)+ — t —i—E,/ d
QQ( ) 2 y( ) 2 f(y( )) d b (t) f(y(s)) s yT(S)y(S) < 6{)\maz(CTc) “"72)\maz(ATA) “"72)\maz(BTB)
(46) 1
, + 077 Amaz (D D) + BAmaz (G G) 5 Amaa (B, Ee)
Based on Assumption 4, we can get that 72
+ maoc ETE(I + 2)\maw E E
P Op(0) < 5 Opalt) = 7 (VT V1000 g Amae(Bo Eo) 7 Amar (0 B1)
+ 7’02 Amaz(Ej Ea)l} sup |ly(s)|?
T T T T —h<s<0
a1 (Da1(t) < g ()q2(t) = " )V Yaip(?) (47)
where Similarly, from (34)-(41) and (47),there exist a positive

constant 3, such that

T — [¢T T T
ORI SONHONHD) Vi) <8 sl

There exist two positive matrices H;p, Ho satisfying the
following inequality Furthermore , we have

e () U] HiU1p(t) — pi (t)Hipi(t) >0 B ke

Y| <y ———=€ sup |ly(s 2
(pT(t)\I/gHQ\IJQQD(t) — q?(t)qul(t) > 0 ” ( )” )\min(P) —h<s<0 ” ( )”

International Scholarly and Scientific Research & Innovation 8(2) 2014 303 1SN1:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:8, No:2, 2014 publications.waset.org/9997441.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:8, No:2, 2014

Then , Based on Theorem 1 and Definition 1, the system (6)
is exponentially stable with convergence rate k, and the proof
is completed. L

Remark 1 Theorem 1 and 2 proposes an improved
exponential stability condition for neural networks with
discrete and distribute time-varying delays.This paper not
only divide the delay interval [0,¢] into two ones [0, 5] and
[5,¢].but also divides the interval [0,<] into four intervals
[0, %],[?,g(t)],[g(t)7 #],[“g“%d, each segments has
a different Lyapunov matrix in function V.In [18,19],they
did not discuss by dividing interval of C(Q—t),and in [20],they
didn’t discuss by dividing interval of % ,which have
potential to yield less conservative results.

Remark 2 Through model transformation,system (6) can be
written as (46),this transformation can make us easy to
understand to many complex problems,and two vectors
fy(t — <)), f(y(t — 5)) are introduced in &(),which are
rarely considered in other literature.this may lead to obtain
an improved feasible region for delay-dependent stability
criteria.

Remark 3 In this paper,Theorem 1 and 2 require the upper
bound p of the time-varying delay <(¢) to be
known.However,in many cases p is unknown,considering this
situation ,we can set Q; = 0,% = 1,2,3,4 in V(y;),and
employ the same methods in Theorem 1 and 2,we can derive
the delay-dependent and delay-derivative-independent
stability criteria.

IV. NUMERICAL EXAMPLES

In this section,we provide three numerical examples to
demonstrate the effectiveness and less conservatism of our
delay-dependent stability criteria.

Example 1 Consider the system (12) with the following
parameters:

23 0 07 09 —15 0.1
C=|0 34 0|,A=|-12 01 0.2},
|0 0 25 0.2 03 08
(0.8 0.6 0.2] 0.3 0.2 0.1
B=105 07 01|,D=101 0.2 0.1

02 0.1 0.5 0.1 0.1 0.2

'y = diag{0,0,0},T's = diag{0.2,0.2,0.2}.

In Table Iwe consider the case of ¢ = p,k = 0,the upper
bound of ¢ for unknown g is derived by Theorem 1 with
Q; = 0,71 =1,2,3,4 in the Lyapunov-Krasovskii functional
V.According to this Table,we can see this example shows
that the stability condition in this paper gives much less
conservative results than those in the literature.

Example 2 Consider the system (12) with the following
parameters:

(6 0 0O 1.2 —-0.8 0.6
C=10 5 0|,A=1]05 —15 0.7,
00 7 0.8 —1.2 —14
[—1.4 09 05 1.8 0.7 =08
B=|-06 12 08|,D=]06 04 1.0
| 05 —0.7 11 —04 —06 1.2
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TABLE I
ALLOWABLE UPPER BOUND OF ¢ FOR UNKNOWN £ IN EXAMPLE 1

Method Maximum of allowable ¢
[16] 1.833
[17] 3.597
[18] 6.938
[19] 9.338
[20] 11.588
Theorem 1 13.914
TABLE 11
ALLOWABLE UPPER BOUND OF k FOR EXAMPLE 2
Method [18] [19] [20] Theorem 1
¢=05,p=02,0=0 0.46 0.58 0.56 0.86
¢=0.5,p=02,0=0.5 0.21 0.35 0.35 0.73
¢=0.6,p=0.2,0=05 0.06 0.20 0.33 0.55
¢=08,p=02,0=0.5 0.00 0.05 0.10 0.30

Let I'y = diag{—1.2,0,—2.4},Ty = diag{0, 1.4,0}.
For various ¢,p, uthe maximum of the exponential
convergence rate index k calculated by Theorem 1.According
to Table II,this example shows that the stability criterion in
this paper can lead to less conservative results.

Example 3 Consider the system (6) with the following
parameters:

6.5618 0 0 [0.3256 —0.1904 0.3322

C=| 0 55784 0 |,A=|-0.1564 0.2446 0.3674

0 0 7.3269 —0.1753 0.2956 —0.3115
0.1981 —0.1313 0.1158]
B = {01645 0.0901 0.1013
0.0274 —0.1518 0.0742|

G =08I,E, = E, = E. = I,T'1 = diag{0,0,0},
Iy = diag{2,2,2}.

Case (1) D = diag{0,0,0}, and E,; = 0. First,consider the
condition with & = 0,and unknown p.For this case .in
[11,12],the upper bound of ¢ for guaranteeing stability were
0.4074 and 0.7245,respectively.However,in Theorem 2,we
can get the upper bound of ¢ with the same condition as
2.970.

Second,consider the case of k # 0,and various u,the upper
bound of ¢ is derived by Theorem 2 in Table III.

~0.1981  0.1313  —0.1158
Case 2) D = |—0.1645 —0.0901 —0.1013|,E, = I,
—0.0274 0.1518 —0.0742

the correspond upper bounds of ¢ for various k, ;1 derived by
Theorem 2 (letting k = 0.5, p = 0.1) in Table IV.

V. CONCLUSION

In this paper, a new delay-dependent exponential stability
criterion for neural networks with time-delaying has been

TABLE III
ALLOWABLE UPPER BOUND OF ¢ FOR CASE (1) OF EXAMPLE 3

Method Theorem 3.2
k=0.1,10=0.5 4.196
k=0.1,10=0.6 3.308
k=0.3,10=0.6 1.629
k=04,up=0.7 1.414
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TABLE IV
ALLOWABLE UPPER BOUND OF ¢ FOR CASE (2) OF EXAMPLE 3

Method Theorem 3.2
nw=0 1.395
pn=0.4 1.234
©n=0.8 1.218
Unknown g 1.213

investigated.By dividing the delay interval and constructing
new Lyapunov-Krasovskii functional which contains some
new integral terms ,and fully uses the information about the
bounding technique of integral terms with different
free-weighting matrices in different delay intervals to reduce
the conservatism of stability criteria. Finally, numerical
examples have presented to illustrate the benefits and less
conservativeness of the proposed method.
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