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Abstract—In this paper, utilizing the Lyapunov functional
method and combining linear matrix inequality (LMI) techniques
and integral inequality approach (IIA) to study the exponential
stability problem for neural networks with discrete and distributed
time-varying delays.By constructing new Lyapunov-Krasovskii
functional and dividing the discrete delay interval into multiple
segments,some new delay-dependent exponential stability criteria
are established in terms of LMIs and can be easily checked.In order
to show the stability condition in this paper gives much less
conservative results than those in the literature,numerical examples
are considered.
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I. INTRODUCTION

NEURAL networks have attracted many researchers

attention during the past decades and have found

successful applications in many areas,such as automatic

control,signal processing,model identification,combinatorial

optimization,and so on[1,2]. However,the occurrence of time

delays is unavoidable in some of these applications,and it

may cause instability of neural networks.Therefore,stability

analysis of delayed neural networks has been extensively

investigated by many researchers. Now, many sufficient

conditions ensuring global asymptotic stability and global

exponential stability for delayed neural networks have been

derived [3-30].The main concern in delayed-dependent

stability analysis for delayed neural networks is to enlarge

the feasibility region of stability criteria to get the maximum

allowable bound of time delays for guaranteed the stability.

some researchers found many new approaches on stability

analysis for neural networks with time-varying delay, such as

introducing new Lyapunov functional,dividing delay interval

and so on.

Motivated by this mentioned above,in this paper, the

exponential stability problem for neural networks with both

time-varying and distributed delays is considered,two new

delay-dependent stability criterion for neural networks with

time-varying delays will be proposed by dividing the delay

interval [0, ς] into [0, ς(t)
2 ],[ ς(t)2 , ς(t)],[ς(t), ς+ς(t)

2 ],[ ς+ς(t)
2 , ς],
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constructing new Lyapunov-Krasovskii functional which

contains some new integrals,and introducing f(y(t − ς
2 )) in

vector ξ(t),which are rarely considered in other literature

.The obtained criterion are less conservative because LMI

approach has been developed to deal with the problem of

globally exponential stability for neural networks with

time-varying delays. Finally, numerical examples are

presented to illustrate the effectiveness of our results.

II. PROBLEM STATEMENT

Consider the following neural networks with discrete and

distributed time-varying delays:

ż(t)=−Cz(t)+Ag(z(t))+Bg(z(t−ς(t)))+D
∫ t

t−ρ

g(z(s))ds+I0

z(t) = Φ(t), t ∈ [−h, 0]
(1)

where z(t) = [z1(t), z2(t), . . . , zn(t)]
T ∈ Rn is the neuron

state vector,g(z(t)) = [g1(z1(t)), g2(z2(t)), . . . , gn(zn(t))]
T

denotes the neuron activation function ,and I0 = [I1, I2, . . . ,
In]

T ∈ Rn is a constant input vector,C = diag{ci} ∈ Rn is

a positive diagonal matrix , A = (aij)n×n ∈ Rn is the

connection weight matrix,B = (bij)n×n ∈ Rn ,and

D = (dij)n×n ∈ Rn are the delayed connection weight

matrices,the initial vector Φ(t) is bounded and continuous on

[−h, 0],where h = max{ρ, ς}.

The following assumptions are adopted throughout the paper.

Assumption 1: The delay ς(t) is time-varying continuous

function and satisfies:

0 ≤ ς(t) ≤ ς, ς̇(t) ≤ μ ≤ 1 (2)

Assumption 2: Each neuron activation function gi(·), i =
1, 2, . . . , n,in (1) satisfies the following condition:

γ−
i ≤ gi(α)− gi(β)

α− β
≤ γ+

i , ∀α, β ∈ R,α �= β (3)

where γ−
i , γ+

i , i = 1, 2, . . . , n are constants,and matrices

Γ1 = diag{γ−
1 , γ−

2 , . . . , γ−
n },Γ2 = diag{γ+

1 , γ+
2 , . . . , γ+

n }.
Based on Assumption 1-2, it can be easily proven that there

exists one equilibrium point for (1) by Brouwer‘s fixed-point

theorem. Assuming that z∗ = [z∗1 , z
∗
2 , . . . , z

∗
n]

T is the

equilibrium point of (1) and using the transformation

y(·) = z(·)− z∗,system (1) can be converted to the following

system :

ẏ(t)=−Cy(t)+Af(y(t))+Bf(y(t−ς(t)))+D
∫ t

t−ρ
f(y(s))ds

(4)
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where y(t) = [y1(t), y2(t), . . . , yn(t)]
T , f(y(t)) = [f1(y1(t)),

f2(y2(t)), . . . , fn(yn(t))]
T , fi(yi(·)) = gi(zi(·)+z∗i )−gi(z

∗
i ),

i = 1, 2, . . . , n.
From Eq.(4),fi(·) satisfies the following condition:

γ−
i ≤ fi(α)

α
≤ γ+

i , ∀α �= 0, i = 1, 2, . . . , n. (5)

Due to the disturbance frequent occurs in many various

applications,and ρ may be distributed time-varying delays ,so

by translating matrices A,B,C,D and constant ρ to function

A(t), B(t), C(t), D(t) and ρ(t), respectively,we have

ẏ(t)=−C(t)y(t)+A(t)f(y(t))+B(t)f(y(t−ς(t)))

+D(t)

∫ t

t−ρ(t)
f(y(s))ds

(6)

Assumption 3: ρ(t) is the time-varying continuous function

and satifies: 0 ≤ ρ(t) ≤ ρ.

Assumption 4: Setting function A(t) = A + ΔA(t), B(t) =
B +ΔB(t), C(t) = C +ΔC(t), D(t) = D +ΔD(t), where

ΔA(t),ΔB(t),ΔC(t),ΔD(t) are unknown constant matrices

respresenting time-varying parametric uncertainties, and are of

linear fractional forms:

[ΔC(t),ΔA(t),ΔB(t),ΔD(t)]=GF (t)[Ec, Ea, Eb, Ed]
(7)

with

FT (t)F (t) ≤ I (8)

Definition 1 The equilibrium point 0 of system (7) is said to

be globally exponentially stable if there exist k > 0 and γ > 0
such that

‖y(t)‖ ≤ γe−kt sup
−h≤s≤0

‖y(t)‖, ∀t > 0 (9)

Lemma 1 [9].The following inequalities are true :

0≤
∫ yi(t)

0

(fi(s)−γ−
i s)ds ≤ (fi(yi(t))−γ−

i yi(t))yi(t),

0≤
∫ yi(t)

0

(γ+
i s−fi(s))ds ≤ (γ+

i yi(t)−fi(yi(t)))yi(t),

(10)

Lemma 2 [10]. For any constant matrix Q,S ∈ Rn×n, Q =
QT > 0, S = ST , the following inequality hold:

− ρ

∫ t

t−ρ

yT (s)Qy(s)ds

≤ −
[∫ t

t−ρ(t)
y(s)ds∫ t−ρ(t)

t−ρ
y(s)ds

]T [
Q S
∗ Q

] [∫ t

t−ρ(t)
y(s)ds∫ t−ρ(t)

t−ρ
y(s)ds

] (11)

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed

and two less conservative delay-dependent stability criterion

are obtained. First, we take up the case where

ΔA(t) = 0,ΔB(t) = 0,ΔC(t) = 0,ΔD(t) = 0 in system

(7) as follows:

ẏ(t)=−Cy(t)+Af(y(t))+Bf(y(t−ς(t)))+D

∫ t

t−ρ(t)
f(y(s))ds

(12)

Denote

ξT (t) =[yT (t), yT (t− ς

2
), yT (t− ς), yT (t− ς(t)), fT (y(t)),

fT (y(t− ς

2
)), fT (y(t− ς)), fT (y(t− ς(t))),∫ t

t−ρ(t)

fT (y(s))ds,

∫ t−ρ(t)

t−ρ

fT (y(s))ds]

Theorem 1 Given that the Assumption 1-3 hold, the system

(12) is globally exponentially stable with the exponential

convergence rate index k if there exist symmetric positive

definite matrices

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦ , P,Qi, i =

1, 2, 3, 4, Ri, i = 1, 2, . . . , 5,positive diagonal matrices

W1,W2,W3,W4,Λ = diag{λ1, λ2, . . . , λn},Δ =
diag{δ1, δ2, . . . , δn},and symmetric matrix Si, i = 1, 2, . . . , 7
such that the following LMIs hold:[
R1 Si

∗ R2

]
> 0, i = 1, 4, 5. (13)

[
R3 Si

∗ R4

]
> 0, i = 2, 6, 7. (14)

[
E ℵTZ
∗ −Z

]
< 0 (15)

[
F ℵTZ
∗ −Z

]
< 0 (16)

where

ℵ =
[−C 0 0 0 A 0 0 B D 0

]
Z =

ς

2
(R2 +R4)

E=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 E12 0 0 E15 E16 0 E18 E19 0
∗ E22 E23 0 E25 E26 E27 0 0 0
∗ ∗ E33 0 0 E36 E37 0 0 0
∗ ∗ ∗ E44 0 0 0 E48 0 0
∗ ∗ ∗ ∗ E55 E56 0 E58 E59 0
∗ ∗ ∗ ∗ ∗ E66 E67 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ E77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E99 E9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E10,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11 F12 0 0 F15 F16 0 F18 F19 0
∗ F22 F23 0 F25 F26 F27 0 0 0
∗ ∗ F33 0 0 F36 F37 0 0 0
∗ ∗ ∗ F44 0 0 0 F48 0 0
∗ ∗ ∗ ∗ F55 F56 0 F58 F59 0
∗ ∗ ∗ ∗ ∗ F66 F67 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ F77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ F88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F99 F9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F10,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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E11=2kP − 2PC − 4kΓ1Λ + 4kΓ2Δ+ 2Γ1ΛC − 2Γ2ΔC

+G11 +Q1 +Q2 +Q3 +
ς

2
(R1 +R3) + e−kςS1

− 2Γ1W1Γ2

E12 = G1,2

E15 = PA+ 2kΛ− 2kΔ− Γ1ΛA+ Γ2ΔA− CΛ + CΔ

+G13 +W1(Γ1 + Γ2)

E16 = G14, E1,8 = PB − Γ1ΛB + Γ2ΔB

E19 = PD − Γ1ΛD + Γ2ΔD

E22 = G22 − e−kςG11 − e−kςS4 + e−2kςS2 − 2Γ1W3Γ2

E23 = −e−kςG12, E25 = G23

E26=G24 − e−kςG13 +W3(Γ1 + Γ2), E27=−e−kςG14

E33=−e−kςG22−e−2kςS2−2Γ1W4Γ2, E36=−e−kςG23

E37 = −e−kςG24 +W4(Γ1 + Γ2)

E44 = −(1− μ)e−2kςQ2 − 2Γ1W2Γ2 − e−kς(S1 − S4)

E48 = W2(Γ1 + Γ2)

E55=2ΛA−2ΔA+G33+Q4+ρ2R5−2W1, E56=G34

E58 = ΛB −ΔB,E59 = ΛD −ΔD

E66 = G44 − e−kςG33 − 2W3, E67 = −e−kςG34

E77=−e−kςG44−2W4, E88=−(1− μ)e−2kςQ4−2W2

E99=−e−2kρR5, E9,10=−e−2kρS3, E10,10=−e−2kρR5

F11=2kP−2PC−4kΓ1Λ+4kΓ2Δ+2Γ1ΛC−2Γ2ΔC

+G11 +Q1 +Q2 +Q3 +
ς

2
(R1 +R3) + e−kςS5

− 2Γ1W1Γ2

F22=G22−e−kςG11−e−kςS5+e−2kςS6−2Γ1W3Γ2

F33 = −e−kςG22 − e−2kςS7 − 2Γ1W4Γ2

F44=−(1− μ)e−2kςQ2−2Γ1W2Γ2−e−2kς(S7−S6)

All the other items in matrix F satisfies Fij �= 0,we can get

Fij = Eij , i, j = 1, 2, . . . , 10.

Proof: Construct a new class of Lyapunov functional

candidate as follow:

V (yt) =

7∑
i=1

Vi(yt)

V1(yt) = e2ktyT (t)Py(t)

V2(yt) = 2e2kt
n∑

i=1

∫ yi(t)

0

[λi(fi(s)−γ−
i s)+δi(γ

+
i s−fi(s))]ds

V3(yt)=

∫ t

t−ς
2

e2ksηT (s)

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦η(s)ds

where

ηT (s) =
[
yT (s) yT (s− ς

2 ) fT (y(s)) fT (y(s− ς
2 ))
]

V4(yt) =

∫ t

t− ς(t)
2

e2ksyT (s)Q1y(s)ds+

∫ t

t−ς(t)

e2ksyT (s)Q2y(s)ds

+

∫ t

t− ς(t)+ς
2

e2ksyT (s)Q3y(s)ds

+

∫ t

t−ς(t)

e2ksfT (y(s))Q4f(y(s))ds

V5(yt)=

∫ 0

− ς
2

∫ t

t+θ

e2ks(yT (s)R1y(s)+ẏT (s)R2ẏ(s))dsdθ

V6(yt)=

∫ − ς
2

−ς

∫ t

t+θ

e2ks(yT (s)R3y(s)+ẏT (s)R4ẏ(s))dsdθ

V7(yt) = ρ

∫ 0

−ρ

∫ t

t+θ

e2ksfT (y(s))R5f(y(s))dsdθ

Then, taking the time derivative of V(t) with respect to t along

the system (12) yield

V̇ (yt) =
7∑

i=1

V̇i(yt)

V̇1(yt) = 2ke2ktyT (t)Py(t) + 2e2ktyT (t)P ẏ(t) (17)

V̇2(yt)=4ke2kt
n∑

i=1

∫ yi(t)

0

[λi(fi(s)−γ−
i s)+δi(γ

+
i s−fi(s))]ds

+ 2e2kt[(fT (y(t))− yT (t)Γ1)Λẏ(t)

+ (yT (t)Γ2 − fT (y(t)))Δẏ(t)]

≤ 4ke2kt[(fT (y(t))− yT (t)Γ1)Λy(t)

+ (yT (t)Γ2 − fT (y(t)))Δy(t)]

+2e2kt[fT (y(t))(Λ−Δ)+yT (t)(Γ2Δ−Γ1Λ)]ẏ(t)
(18)
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V̇3(yt) = e2ktηT (t)

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦ η(t)

−e2k(t−
ς
2 )ηT (t− ς

2
)

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦η(t− ς

2
)

(19)

V̇4(yt) ≤ e2kt[yT (t)(Q1 +Q2 +Q3)y(t) + fT (y(t))Q4f(y(t))

− (1− μ

2
)e−kςyT (t− ς(t)

2
)Q1y(t− ς(t)

2
)

− (1− μ

2
)e−2kςyT (t− ς(t) + ς

2
)Q3y(t− ς(t) + ς

2
)

− (1− μ)e−2kςyT (t− ς(t))Q2y(t− ς(t))

− (1− μ)e−2kςfT (y(t− ς(t)))Q4f(y(t− ς(t)))]
(20)

V̇5(yt) ≤ ς

2
e2kt(yT (t)R1y(t) + ẏT (t)R2ẏ(t))

− e2k(t−
ς
2 )

∫ t

t− ς
2

(yT (s)R1y(s) + ẏT (s)R2ẏ(s))ds

(21)

V̇6(yt) ≤ ς

2
e2kt(yT (t)R3y(t) + ẏT (t)R4ẏ(t))

− e2k(t−ς)

∫ t− ς
2

t−ς

(yT (s)R3y(s) + ẏT (s)R4ẏ(s))ds

(22)

V̇7(yt) ≤ ρ2e2ktfT (y(t))R5f(y(t))

− ρe2k(t−ρ)

∫ t

t−ρ

fT (y(s))R5f(y(s))ds

≤ e2kt
{
ρ2fT (y(t))R5f(y(t))

−e−2kρ

[∫ t

t−ρ(t)
f(y(s))ds∫ t−ρ(t)

t−ρ
f(y(s))ds

]T[
R5 S5

∗ R5

][∫ t

t−ρ(t)
f(y(s))ds∫ t−ρ(t)

t−ρ
f(y(s))ds

]⎫⎬
⎭

(23)

From (5), we can get that there exist positive diagonal matrices

W1,W2,W3,W4 such that the following inequalities holds:

e2kt[−2fT (y(t))W1f(y(t)) + 2yT (t)W1(Γ1 + Γ2)f(y(t))

− 2yT (t)Γ1W1Γ2y(t)] ≥ 0
(24)

e2kt[−2fT (y(t−ς(t)))W2f(y(t−ς(t)))+2yT (t−ς(t))W2(Γ1

+Γ2)f(y(t−ς(t)))−2yT (t−ς(t))Γ1W2Γ2y(t−ς(t))] ≥ 0
(25)

e2kt[−2fT (y(t− ς

2
))W3f(y(t− ς

2
)) + 2yT (t− ς

2
)W3(Γ1

+ Γ2)f(y(t− ς

2
))− 2yT (t− ς

2
)Γ1W3Γ2y(t− ς

2
)] ≥ 0

(26)

e2kt[−2fT (y(t− ς))W4f(y(t− ς)) + 2yT (t− ς)W4(Γ1

+ Γ2)f(y(t− ς))− 2yT (t− ς)Γ1W4Γ2y(t− ς)] ≥ 0
(27)

(1) When 0 ≤ ς(t) ≤ ς
2 ,we consider the following three zero

equalities with any symmetric matrix S1, S2, S4 :

e2k(t−
ς
2 )[yT (t)S1y(t)− yT (t− ς(t))S1y(t− ς(t))

− 2

∫ t

t−ς(t)

yT (s)S1ẏ(s)ds] = 0
(28)

e2k(t−
ς
2 )[yT (t− ς(t))S4y(t− ς(t))− yT (t− ς

2
)S4y(t− ς

2
)

− 2

∫ t−ς(t)

t− ς
2

yT (s)S4ẏ(s)ds] = 0

(29)

e2k(t−ς)[yT (t− ς

2
)S2y(t− ς

2
)− yT (t− ς)S2y(t− ς)

− 2

∫ t− ς
2

t−ς

yT (s)S2ẏ(s)ds] = 0

(30)

From (17)-(30),we can get

V̇ (yt)≤e2kt[ξT (t)(E+ℵTZℵ)ξ(t)
−(1−μ

2
)(e−kςyT (t− ς(t)

2
)Q1y(t− ς(t)

2
)

− e−2kςyT (t− ς(t) + ς

2
)Q3y(t− ς(t) + ς

2
))]

− e2k(t−
ς
2 )

∫ t

t−ς(t)

[
y(s)
ẏ(s)

]T [
R1 S1

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−
ς
2 )

∫ t−ς(t)

t− ς
2

[
y(s)
ẏ(s)

]T [
R1 S4

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t− ς
2

t−ς

[
y(s)
ẏ(s)

]T [
R3 S2

∗ R4

] [
y(s)
ẏ(s)

]
ds

(2) When ς
2 ≤ ς(t) ≤ ς ,we consider the following three zero

equalities with any symmetric matrix S5, S6, S7 :

e2k(t−
ς
2 )[yT (t)S5y(t)− yT (t− ς

2
)S5y(t− ς

2
)

− 2

∫ t

t− ς
2

yT (s)S5ẏ(s)ds] = 0
(31)

e2k(t−ς)[yT (t− ς

2
)S6y(t− ς

2
)−yT (t−ς(t))S6y(t−ς(t))

−2

∫ t−ς
2

t−ς(t)
yT (s)S6ẏ(s)ds] = 0

(32)

e2k(t−ς)[yT (t−ς(t))S7y(t−ς(t))−yT (t−ς)S7y(t−ς)

−2

∫ t−ς(t)

t−ς
yT (s)S7ẏ(s)ds] = 0

(33)
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From (17)-(27),and (31)-(33),we can get

V̇ (yt) ≤ e2kt[ξT (t)(F + ℵTZℵ)ξ(t)
− (1− μ

2
)(e−kςyT (t− ς(t)

2
)Q1y(t− ς(t)

2
)

− e−2kςyT (t− ς(t) + ς

2
)Q3y(t− ς(t) + ς

2
))]

− e2k(t−
ς
2 )

∫ t

t− ς
2

[
y(s)
ẏ(s)

]T [
R1 S5

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t− ς
2

t−ς(t)

[
y(s)
ẏ(s)

]T [
R3 S6

∗ R4

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t−ς(t)

t−ς

[
y(s)
ẏ(s)

]T [
R3 S7

∗ R4

] [
y(s)
ẏ(s)

]
ds

Hence,combined with the Schur complement and (13)-(16), we

can obtain V̇ (yt) ≤ 0,this means the system (12) is guaranted

to be asymptotically stable for 0 ≤ ς(t) ≤ ς, 0 ≤ ρ(t) ≤ ρ,on

the other hand,we have the followings:

V1(y0) ≤ λmax(P )‖y(0)‖2 ≤ λmax(P ) sup
−h≤s≤0

‖y(s)‖2

(34)

V2(y0)≤2
{
[f(y(0))−Γ1y(0)]

TΛ+[Γ2y(0)−f(y(0))]TΔ
}
y(0)

≤2λmax(Γ1−Γ2)(λmax(Λ)+λmax(Δ)) sup
−h≤s≤0

‖y(s)‖2

(35)

V3(y0) ≤
∫ 0

− ς
2

ηT (s)

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦η(s)ds

≤ ς(1+γ2)λmax

⎛
⎜⎜⎝
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎞
⎟⎟⎠ sup

−h≤s≤0
‖y(s)‖2

(36)

where

γ = max
1≤i≤n

{| γ−
i | | γ+

i |}

V4(y0)≤(
ς

2
λmax(Q1)+ςλmax(Q2)+ςλmax(Q3)

+ςγ2λmax(Q4)) sup
−h≤s≤0

‖y(s)‖2 (37)

V5(y0) ≤ ς2

8
λmax(R1) sup

−h≤s≤0
‖y(s)‖2

+ λmax(R2)

∫ 0

− ς
2

∫ 0

θ

ẏT (s)ẏ(s)dsdθ

(38)

V6(y0) ≤ 3ς2

8
λmax(R3) sup

−h≤s≤0
‖y(s)‖2

+ λmax(R4)

∫ − ς
2

−ς

∫ 0

θ

ẏT (s)ẏ(s)dsdθ

(39)

According to 2xT y ≤ xTY x+ yTY y with Y > 0

ẏT (s)ẏ(s)≤4[λmax(C
TC)+γ2λmax(A

TA)+γ2λmax(B
TB)

+ρ2mγ2λmax(D
TD)] sup

−h≤s≤0
‖y(s)‖2

(40)

V7(y0) ≤ ρλmax(R5)

∫ 0

−ρ

∫ 0

θ

fT (y(s))f(y(s))dsdθ

≤ ρ3γ2

2
λmax(R5) sup

−h≤s≤0
‖y(s)‖2

(41)

According to (34)-(41),there exist a positive constant α,such

that

V (y0) ≤ α sup
−h≤s≤0

‖y(s)‖2

where

α = λmax(P ) + 2λmax(Γ1 − Γ2)(λmax(Λ) + λmax(Δ))

+ (
ς

2
λmax(Q1) + ςλmax(Q2) + ςλmax(Q3) + ςγ2λmax(Q4))

+
ς2

8
λmax(R1) +

3ς2

8
λmax(R3) + 2ς2(λmax(C

TC)

+ γ2λmax(A
TA) + γ2λmax(B

TB) + ρ2mγ2λmax(D
TD))

+
ρ3γ2

2
λmax(R5)+ς(1+γ2)λmax

⎛
⎜⎜⎝
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎞
⎟⎟⎠

Furthermore , we have

V (yt) ≥ e2ktλmin(P )‖y(t)‖2

Then we can easily obtain

e2ktλmin(P )‖y(t)‖2 ≤ α sup
−h≤s≤0

‖y(s)‖2

Which leads to

‖y(t)‖ ≤
√

α

λmin(P )
e−kt sup

−h≤s≤0
‖y(s)‖2

Thus by Definition 1,when the system (7) satisfies ΔA(t) =
ΔB(t) = ΔC(t) = ΔD(t) = 0 is exponentially stable with

convergence rate k,and the proof is completed.

Based on Theorem 1,we have the following result for

neural networks with time-varying.

Theorem 2 Given that the Assumption 1-4 hold, the system

(6) is globally exponentially stable with the exponential

convergence rate index k if there exist symmetric positive

definite matrices P,H1, H2, Qi, i = 1, 2, 3, 4, Ri, i =

1, 2, . . . , 5,

⎡
⎢⎢⎣
G11 G12 G13 G14

∗ G22 G23 G24

∗ ∗ G33 G34

∗ ∗ ∗ G44

⎤
⎥⎥⎦,positive diagonal

matrices W1,W2,W3,W4,Λ = diag{λ1, λ2, . . . , λn},Δ =
diag{δ1, δ2, . . . , δn},,and any symmetric matrix Si, i = 1, 2,
. . . , 7 ,such that the following LMIs hold:[
R1 Si

∗ R2

]
> 0, i = 1, 4, 5. (42)
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[
R3 Si

∗ R4

]
> 0, i = 2, 6, 7. (43)

⎡
⎢⎢⎢⎢⎣
E+ℵTZℵ 
G 
G ΨT

11H1 ΨT
22H2

∗ −H1+GTZG GTZG 0 0
∗ ∗ −H2+GTZG 0 0
∗ ∗ ∗ −H1 0
∗ ∗ ∗ ∗ −H2

⎤
⎥⎥⎥⎥⎦<0
(44)

⎡
⎢⎢⎢⎢⎣
F+ℵTZℵ 
G 
G ΨT

11H1 ΨT
22H2

∗ −H1+GTZG GTZG 0 0
∗ ∗ −H2+GTZG 0 0
∗ ∗ ∗ −H1 0
∗ ∗ ∗ ∗ −H2

⎤
⎥⎥⎥⎥⎦<0
(45)

where

Ψ11 =
[
Ec

2 0 0 0 Ea

2 0 0 Eb 0 0
]

Ψ1 =
[
Ψ11 0 0

]
Ψ22 =

[
Ec

2 0 0 0 Ea

2 0 0 0 Ed 0
]

Ψ2 =
[
Ψ22 0 0

]

T =[P+Γ2Δ−Γ1Λ−CZ, 0, 0, 0,Λ−Δ+ZA,

0, 0, ZB,ZD, 0]

Proof: System (6) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t)=−Cy(t)+Af(y(t))+Bf(y(t−ς(t)))

+D

∫ t

t−ρ(t)
f(y(s))ds+G(p1(t) + q1(t))

p1(t) = F (t)p2(t)

q1(t) = F (t)q2(t)

p2(t) =
Ec

2
y(t) +

Ea

2
f(y(t)) + Ebf(y(t− ς(t)))

q2(t) =
Ec

2
y(t) +

Ea

2
f(y(t)) + Ed

∫ t

t−ρ(t)

f(y(s))ds

(46)

Based on Assumption 4, we can get that

pT1 (t)p1(t) ≤ pT2 (t)p2(t) = ϕT (t)ΨT
1 Ψ1ϕ(t)

qT1 (t)q1(t) ≤ qT2 (t)q2(t) = ϕT (t)ΨT
2 Ψ2ϕ(t)

where

ϕT (t) = [ξT (t), pT1 (t), q
T
1 (t)]

There exist two positive matrices H1, H2,satisfying the

following inequality

ϕT (t)ΨT
1 H1Ψ1ϕ(t)− pT1 (t)H1p1(t) ≥ 0

ϕT (t)ΨT
2 H2Ψ2ϕ(t)− qT1 (t)H2q1(t) ≥ 0

Similarly,we can obtain that,when 0 ≤ ς(t) ≤ ς
2 ,one can

obtain that

V̇ (yt) ≤ e2kt[ϕT (t)(Ω1 +ΨT
1 H1Ψ1 +ΨT

2 H2Ψ2)ϕ(t)

− (1− μ

2
)(e−kςyT (t− ς(t)

2
)Q1y(t− ς(t)

2
)

− e−2kςyT (t− ς(t) + ς

2
)Q3y(t− ς(t) + ς

2
))]

− e2k(t−
ς
2 )

∫ t

t−ς(t)

[
y(s)
ẏ(s)

]T [
R1 S1

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−
ς
2 )

∫ t−ς(t)

t− ς
2

[
y(s)
ẏ(s)

]T [
R1 S4

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t− ς
2

t−ς

[
y(s)
ẏ(s)

]T [
R3 S2

∗ R4

] [
y(s)
ẏ(s)

]
ds

where

Ω1 =

⎡
⎣E + ℵTZℵ 
G 
G

∗ −H1 +GTZG GTZG
∗ ∗ −H2 +GTZG

⎤
⎦

when ς
2 ≤ ς(t) ≤ ς ,one can obtain that

V̇ (yt) ≤ e2kt[ϕT (t)(Ω2 +ΨT
1 H1Ψ1 +ΨT

2 H2Ψ2)ϕ(t)

− (1− μ

2
)(e−kςyT (t− ς(t)

2
)Q1y(t− ς(t)

2
)

− e−2kςyT (t− ς(t) + ς

2
)Q3y(t− ς(t) + ς

2
))]

− e2k(t−
ς
2 )

∫ t

t− ς
2

[
y(s)
ẏ(s)

]T [
R1 S5

∗ R2

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t− ς
2

t−ς(t)

[
y(s)
ẏ(s)

]T [
R3 S6

∗ R4

] [
y(s)
ẏ(s)

]
ds

− e2k(t−ς)

∫ t−ς(t)

t−ς

[
y(s)
ẏ(s)

]T [
R3 S7

∗ R4

] [
y(s)
ẏ(s)

]
ds

where

Ω2 =

⎡
⎣F + ℵTZℵ 
G 
G

∗ −H1 +GTZG GTZG
∗ ∗ −H2 +GTZG

⎤
⎦

According to (42)-(45),then we can obtain V̇ (yt) ≤ 0.On the

other hand

ẏT (s)ẏ(s) ≤ 6{λmax(C
TC) + γ2λmax(A

TA) + γ2λmax(B
TB)

+ ρ2mγ2λmax(D
TD) + 3λmax(G

TG)[
1

2
λmax(E

T
c Ec)

+
γ2
2
λmax(E

T
a Ea) + γ2λmax(E

T
b Eb)

+ γ2ρ2mλmax(E
T
d Ed)]} sup

−h≤s≤0
‖y(s)‖2

(47)

Similarly, from (34)-(41) and (47),there exist a positive

constant β, such that

V (y0) ≤ β sup
−h≤s≤0

‖y(s)‖2

Furthermore , we have

‖y(t)‖ ≤
√

β

λmin(P )
e−kt sup

−h≤s≤0
‖y(s)‖2
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Then , Based on Theorem 1 and Definition 1, the system (6)

is exponentially stable with convergence rate k, and the proof

is completed.

Remark 1 Theorem 1 and 2 proposes an improved

exponential stability condition for neural networks with

discrete and distribute time-varying delays.This paper not

only divide the delay interval [0, ς] into two ones [0, ς
2 ] and

[ ς2 , ς],but also divides the interval [0, ς] into four intervals

[0, ς(t)
2 ],[ ς(t)2 , ς(t)],[ς(t), ς+ς(t)

2 ],[ ς+ς(t)
2 , ς], each segments has

a different Lyapunov matrix in function V .In [18,19],they

did not discuss by dividing interval of
ς(t)
2 ,and in [20],they

didn’t discuss by dividing interval of
ς+ς(t)

2 ,which have

potential to yield less conservative results.

Remark 2 Through model transformation,system (6) can be

written as (46),this transformation can make us easy to

understand to many complex problems,and two vectors

f(y(t − ς)), f(y(t − ς
2 )) are introduced in ξ(t),which are

rarely considered in other literature.this may lead to obtain

an improved feasible region for delay-dependent stability

criteria.

Remark 3 In this paper,Theorem 1 and 2 require the upper

bound μ of the time-varying delay ς(t) to be

known.However,in many cases μ is unknown,considering this

situation ,we can set Qi = 0, i = 1, 2, 3, 4 in V (yt),and

employ the same methods in Theorem 1 and 2,we can derive

the delay-dependent and delay-derivative-independent

stability criteria.

IV. NUMERICAL EXAMPLES

In this section,we provide three numerical examples to

demonstrate the effectiveness and less conservatism of our

delay-dependent stability criteria.

Example 1 Consider the system (12) with the following

parameters:

C =

⎡
⎣2.3 0 0

0 3.4 0
0 0 2.5

⎤
⎦ , A =

⎡
⎣ 0.9 −1.5 0.1
−1.2 0.1 0.2
0.2 0.3 0.8

⎤
⎦ ,

B =

⎡
⎣0.8 0.6 0.2
0.5 0.7 0.1
0.2 0.1 0.5

⎤
⎦ , D =

⎡
⎣0.3 0.2 0.1
0.1 0.2 0.1
0.1 0.1 0.2

⎤
⎦

Γ1 = diag{0, 0, 0},Γ2 = diag{0.2, 0.2, 0.2}.
In Table I,we consider the case of ς = ρ, k = 0,the upper

bound of ς for unknown μ is derived by Theorem 1 with

Qi = 0, i = 1, 2, 3, 4 in the Lyapunov-Krasovskii functional

V.According to this Table,we can see this example shows

that the stability condition in this paper gives much less

conservative results than those in the literature.

Example 2 Consider the system (12) with the following

parameters:

C =

⎡
⎣6 0 0
0 5 0
0 0 7

⎤
⎦ , A =

⎡
⎣ 1.2 −0.8 0.6

0.5 −1.5 0.7
−0.8 −1.2 −1.4

⎤
⎦ ,

B =

⎡
⎣−1.4 0.9 0.5
−0.6 1.2 0.8
0.5 −0.7 1.1

⎤
⎦ , D =

⎡
⎣ 1.8 0.7 −0.8

0.6 0.4 1.0
−0.4 −0.6 1.2

⎤
⎦

TABLE I
A

Method Maximum of allowable ς
[16] 1.833
[17] 3.597
[18] 6.938
[19] 9.338
[20] 11.588

Theorem 1 13.914

TABLE II
A

Method [18] [19] [20] Theorem 1
ς = 0.5, ρ = 0.2, μ = 0 0.46 0.58 0.56 0.86
ς = 0.5, ρ = 0.2, μ = 0.5 0.21 0.35 0.35 0.73
ς = 0.6, ρ = 0.2, μ = 0.5 0.06 0.20 0.33 0.55
ς = 0.8, ρ = 0.2, μ = 0.5 0.00 0.05 0.10 0.30

Let Γ1 = diag{−1.2, 0,−2.4},Γ2 = diag{0, 1.4, 0}.

For various ς, ρ, μ,the maximum of the exponential

convergence rate index k calculated by Theorem 1.According

to Table II,this example shows that the stability criterion in

this paper can lead to less conservative results.

Example 3 Consider the system (6) with the following

parameters:

C=

⎡
⎣6.5618 0 0

0 5.5784 0
0 0 7.3269

⎤
⎦ , A=

⎡
⎣ 0.3256 −0.1904 0.3322
−0.1564 0.2446 0.3674
−0.1753 0.2956 −0.3115

⎤
⎦ ,

B =

⎡
⎣0.1981 −0.1313 0.1158
0.1645 0.0901 0.1013
0.0274 −0.1518 0.0742

⎤
⎦

G = 0.8I, Ea = Eb = Ec = I,Γ1 = diag{0, 0, 0},
Γ2 = diag{2, 2, 2}.
Case (1) D = diag{0, 0, 0}, and Ed = 0. First,consider the

condition with k = 0,and unknown μ.For this case ,in

[11,12],the upper bound of ς for guaranteeing stability were

0.4074 and 0.7245,respectively.However,in Theorem 2,we

can get the upper bound of ς with the same condition as

2.970.

Second,consider the case of k �= 0,and various μ,the upper

bound of ς is derived by Theorem 2 in Table III.

Case (2) D =

⎡
⎣−0.1981 0.1313 −0.1158
−0.1645 −0.0901 −0.1013
−0.0274 0.1518 −0.0742

⎤
⎦ , Ed = I,

the correspond upper bounds of ς for various k, μ derived by

Theorem 2 (letting k = 0.5, ρ = 0.1) in Table IV.

V. CONCLUSION

In this paper, a new delay-dependent exponential stability

criterion for neural networks with time-delaying has been

TABLE III
A

Method Theorem 3.2
k = 0.1, μ = 0.5 4.196
k = 0.1, μ = 0.6 3.308
k = 0.3, μ = 0.6 1.629
k = 0.4, μ = 0.7 1.414

LLOWABLE UPPER BOUND OF ς FOR UNKNOWN μ IN EXAMPLE 1

LLOWABLE UPPER BOUND OF k FOR EXAMPLE 2

LLOWABLE UPPER BOUND OF ς FOR CASE (1) OF EXAMPLE 3
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TABLE IV
A

Method Theorem 3.2
μ = 0 1.395
μ = 0.4 1.234
μ = 0.8 1.218

Unknown μ 1.213

investigated.By dividing the delay interval and constructing

new Lyapunov-Krasovskii functional which contains some

new integral terms ,and fully uses the information about the

bounding technique of integral terms with different

free-weighting matrices in different delay intervals to reduce

the conservatism of stability criteria. Finally, numerical

examples have presented to illustrate the benefits and less

conservativeness of the proposed method.
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