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Abstract—This paper addresses the controller synthesis problem of
discrete-time switched positive systems with bounded time-varying
delays. Based on the switched copositive Lyapunov function ap-
proach, some necessary and sufficient conditions for the existence of
state-feedback controller are presented as a set of linear programming
and linear matrix inequality problems, hence easy to be verified.
Another advantage is that the state-feedback law is independent on
time-varying delays and initial conditions. A numerical example is
provided to illustrate the effectiveness and feasibility of the developed
controller.

Keywords—Switched copositive Lyapunov functions, Positive lin-
ear systems, Switched systems, Time-varying delays, Stabilization.

I. INTRODUCTION

ADynamical system is called positive if for any non-
negative initial condition, the corresponding solution of

system is also nonnegative. In the real world, positive systems
play an important role in the modeling of dynamical phe-
nomena whose variables are restricted to be nonnegative[1],
[2]. This model class is used in many areas such as absolute
temperature, level of liquid in tanks and concentrations of
chemicals, ecology, etc.. These features make analysis and
synthesis of positive systems a challenging and interesting job
[3], [4], [5], [6], [7], [8], [9].

Recently, the importance of linear switched positive systems
(LSPSs) has been highlighted by many researchers because
of finding broad application in communication systems [5],
formation flying [6], and other areas. It should be noted that,
although positive systems had been many recent studies in the
control engineering and mathematics literature, there are still
many open questions relating to LSPSs. Thus, this observation
has led to great interest in the stability of such systems under
arbitrary switching regimes. A key result in this connection is
that stability of such systems is equivalent to the existence of
a common Lyapunov function[10]. Generally speaking, three
classes of Lyapunov function naturally suggest themselves
for LSPSs: common quadratic Lyapunov functions, common
diagonal Lyapunov functions, and common linear copositive
Lyapunov functions. For continuous time-invariant LSPSs,
the authors of [11] and independently Dvid Angeli, posed a
conjecture that the existence of common quadratic Lyapunov
function can be determined by testing the Hurwitz-stability
of an associated convex set of matrices. Gurvits, Shorten and
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Mason [12] proved that this conjecture is true for pairs of
second order systems and is false in general. In the paper
[13], a necessary and sufficient was derived for the existence
of common diagonal Lyapunov function for the systems with
irreducible system matrices. It is well known that traditional
Lyapunov functions may give conservative stability conditions
for LSPSs as they fail to take account that the trajectories are
naturally constrained to the positive orthant. Therefore, it is
natural to adopt common linear copositive Lyapunov functions
which is both necessary and sufficient for the stability of
LSPSs [14]. Moreover, work discussed in [15] provided a
method for determining whether or not a given LSPSs is stable.
Such approach is based upon determining verifiable conditions
for a common linear copositive Lyapunov function. For the
discrete time-invariant LSPSs, switched copositive Lyapunov
function (SCLF) method is proposed in [16], some necessary
and sufficient conditions for the existence of such a function
has been established.

Up to now, the studies on LSPSs with delays have not been
reported and note that SCLFs have less conservative than other
Lyapunov functions. For these consideration, this paper aims
to solve the stabilization problem for LSPSs with bounded
time-varying delays by means of SCLF. The organization of
this paper is as follows. Section II gives the mathematical
background and notations necessary. Section III is dedicated
to stabilization analysis of discrete-time LSPSs with bounded
time-varying delays by SCLF approach. A numerical example
is presented to illustrate the validity of the designed algorithms
in Section IV , and some concluding remarks are presented in
Section V.

II. NOTATION AND BACKGROUND

Throughout, R(R0,+,R+) denotes the set of all real (non-
negative, positive) numbers, R

n(Rn
0,+, R

n
+) stands for the

n−dimensional real (nonnegative, positive) vector space and
R

n×m(Rn×m
0,+ ) is the space of m × n matrices with real

(nonnegative) entries. For A in R
n×n, A � 0(� 0) means

that all elements of matrix A are nonnegative (nonpositive) and
A � 0(≺ 0) means that all elements of matrix A are positive
(negative). The notion A > 0(< 0) means that matrix A is a
symmetric positive (negative) definite matrix. Meanwhile, we
write AT (A−1) for the transpose (inverse) of matrix A. Let
N = {1, 2, 3, · · · } and N0 = {0}⋃N. ‖x‖ denotes the norm
of vector x.

A function f : R0,+ → R0,+ is said to be of class K if and
only if it is continuous, strictly increasing, zero at zero, and
satisfying f(t) → +∞ as t → +∞. Also, when referring to
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the switched linear systems, stability shall be used to denote
asymptotic stability under arbitrary switching signals.

Consider the delayed system

x(k + 1) = A(0)x(k) +
p∑

l=1

A(l)x(k − h(l)(k)),

k ∈ N0,

x(k) = ϕ(k) � 0, k = −h, · · · , 0,

(1)

where x(k) ∈ R
n is the state vector. A(l) ∈ R

n×n, h(l)(k) ∈
N0 are bounded time-varying delays, l ∈ {0, · · · , p}, h =
maxl∈{1,··· ,p}{suph(l)(k)|k ∈ N0} is a constant in N0,+, ϕ :
{−h, · · · , 0} → R0,+ is the vector-valued initial function.

Definition 1: System (1) is said to be positive if and only if
for any initial condition x(0) � 0, the corresponding trajectory
x(k) � 0 holds for all k ∈ N0.

Lemma 1: [17] System (1) is positive if and only if A(l) �
0 for all l ∈ {0, · · · , p}.

Lemma 2: [18]The equilibrium zero of

x(k + 1) = f(x(k), k), k ∈ N0 (2)

is globally uniformly asymptotically stable if there is a positive
definite, decrescent, and radially unbounded function V : N×
R

n → R such that 
V (k, x(k)) = V (k + 1, x(k + 1)) −
V (k, x(k)) is negative definite along the solution of (2).

Remark 1: In Lemma 2, a function V (k, x(k)) is definite,
decrescent, and radially unbound, which means that there
exist two functions α and β of K such that α(‖x(k)‖) ≤
V (k, x(k)) ≤ β(‖x(k)‖). A function V (k, x(k)) is called
negative definite if and only there exists a function γ of class
K such that V (k, x(k)) ≤ −γ(‖x(k)‖).

III. MAIN RESULTS

In this section, we shall investigate the stabilization of
the discrete-time switched system with bounded time-varying
delays given by

x(k + 1) =A(0)(k)x(k)+∑p

l=1
A(l)(k)x(k − h(l)(k)) + u(k),

x(0) =ϕ(k) � 0, k = −h, · · · , 0,
(3)

where x(k) ∈ R
n is the state vector and u(k) ∈ R

n is
the state-feedback, not sign restricted. k ∈ N0, A

(l)(k) ∈
{A(l)

1 , · · · , A(l)
m }, and A

(l)
i ∈ R

n×n. h(l)(k) ∈ N0 are the
delays satisfying 0 ≤ h(l)(k) ≤ h(l) with constant h(l) ∈ N0

and l ∈ P = {0, · · · , p}. i ∈ I = {1, · · · ,m} is the index set,
m is the number of the subsystems, ϕ : {−h, · · · , 0} → R0,+

is the vector-valued initial function, h = max{h(l)|l ∈ P},
and write H = {0, · · · , h}.

The aim of this paper is to solve the controller synthesis
problem by means of SCLF which guarantees the stability of
the system with bounded time-varying delays (3). Especially,
the control law must be designed in such way that the resulting
governed system is positive and stable. In this paper, we are
interested in designing a state-feedback controller

u(k) = F (k)
∑p

l=0
x(k − h(l)(k)), (4)

where F (k) ∈ {F1, · · · , Fm}, Fi ∈ R
n×n.

With regard to the previous preliminary results, the problem
reduces to look for a state-feedback law u(k) as (4) has to be
determined to satisfy the following problem.

• The system (3) is positive, i.e., A(l)
i + Fi � 0.

• The system (3) is stable, i.e., find a SCLF whose differ-
ence is negative definite.

Now, substituting (4) into system (3) yields the following
closed-loop system

x(k + 1) = Ã(0)(k)x(k) +
p∑

l=1

Ã(l)(k)x(k − h(l)(k)),

x(0) = ϕ(k) � 0, k = −h, · · · , 0,
(5)

where Ã(l)(k) = A(l)(k) + F (k), l ∈ P .
Furthermore, let x̄(k) = [xT (k), xT (k − 1), · · · , xT (k −

h)]T ∈ R
n(h+1) and

Ā(k) =

⎡
⎢⎢⎢⎣

Ā(0)(k) · · · Ā(h−1)(k) Ā(h)(k)
In · · · 0 0
...

...
...

...
0 · · · In 0

⎤
⎥⎥⎥⎦ (6)

with

Ā(g)(k) =

{
Ã(l)(k), h(l)(k) = g

0, h(l)(k) �= g
,∀g ∈ H, l ∈ P. (7)

Then, the switched system without delays equivalent to the
switched system (5) has the form

x̄(k + 1) = Ā(k)x̄(k). (8)

Now, it is easy to see that positivity and stability of (8)
implies that (5) is positive and stability. Furthermore, define
the indicator function with i ∈ I as

ξi(k) =

{
1, when the ith mode of (5) is activated
0, otherwise

(9)

Then, the system (8) can also be rewritten as

x̄(k + 1) =
m∑

i=1

ξi(k)Āix̄(k), (10)

where

Āi =

⎡
⎢⎢⎢⎣

Ā
(0)
i · · · Ā

(h−1)
i Ā

(h)
i

In · · · 0 0
...

...
...

...
0 · · · In 0

⎤
⎥⎥⎥⎦ ∈ R

n(h+1)×n(h+1)

(11)
with

Ā
(g)
i =

{
Ã

(l)
i , h(l)(k) = g

0, h(l)(k) �= g
,∀g ∈ H. (12)

In the case of switched systems as (8), this corresponds to
the SCLF defined as

V (k) = x̄T (k)
m∑

i=1

ξi(k)λi = x̄T (k)λ(k), (13)
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where λ(k) =
∑m

i=1 ξi(k)λi ∈ R
n(h+1)
+ .

According to the structure of the system (8) and (10), we
thus write

λ(k) = [λ(0)T (k), · · · , λ(h)T (k)]T ,

λi = [λ(0)T
i , · · · , λ(h)T

i ]T ∈ R
n(h+1)
+ ,

λ
(g)
i = [λ(g)

i1 , · · · , λ(g)
in ]T ∈ R

n
+.

(14)

Moreover, it is easy to show that the SCLF (13) is positive
definite, decrescent, and radially unbounded since

α‖x̄(k)‖ ≤ V (k, x(k)) ≤ β‖x̄(k)‖

with α = min∀(i,s,g){λ(g)
is }, β = max∀(i,s,g){λ(g)

is }, i ∈ I, s ∈
N = {1, · · · , n}, and g ∈ H.

The following Theorem ensures that the state-feedback
controller is easily fixed, such controller guarantees that the
switched closed-loop system (5) is positive and stable.

Theorem 1: For the switched close-loop system (5), the
following statements are equivalent:

(i) There exist a state-feedback controller given by (4) and
a SCLF of the form (13) whose difference is negative
definite, such that system (5) is positive and stable.

(ii) (LP problem) For all (g, l, i, j, u, v) ∈ H×P ×I ×I ×
N × N , there exist m × (h + 1) vectors λ(g)

i ∈ R
n
+

and m×m×n vectors kijv = [kijv1, · · · , kijvn] ∈ R
n,

satisfying

a
(l)
iuvλ

(0)
ju + kijvu ≥ 0,

A
(l)T
i λ

(0)
j + λ

(l+1)
j − λ

(l)
i

+
n∑

v=1

kijv ≺ 0, g = h(l)(k),

λ
(g+1)
j − λ

(g)
i ≺ 0, g �= h(l)(k)

(15)

with A(l)
i = [a(l)

iuv]. Moreover, the gain matrices Fi can
be calculated as follows:

Fi = [f i1, · · · , f in] =

[
kT

ij1

λ
(0)
j1

, · · · , kT
ijn

λ
(0)
jn

]T

. (16)

(iii) (LMI problem) For all (g, l, i, j, u, v) ∈ H × P ×
I × I × N × N , there exist m × (h + 1) matrices
Q

(g)
i = diag

(
q
(g)
i1 , q

(g)
i2 , · · · , q(g)

in

)
> 0 and m × m

matrices Dij = [dij1, · · · , dijn] = [dijvu] ∈ R
n×n such

that

a
(l)
iuvλ

(0)
ju + dijvu ≥ 0,

Φ(l)
ij < 0, g = h(l)(k),

Q
(g+1)
j −Q

(g)
i < 0, g �= h(l)(k),

(17)

where

Φ(l)
ij = diag

(
φ

(l)
ij1, φ

(l)
ij2, · · · , φ(l)

ijn

)
,

φ
(l)
iju = a(l)T

iu q(0)
j + q

(l+1)
ju − q

(l)
iu +

n∑
v=1

dijvu

with q(0)
j = [q(0)i1 , q

(0)
i2 , · · · , q(0)in ]T and a(l)

iu is the uth
column vector of matrix A

(l)
i . In this case, the gain

matrices Fi can be fixed as follows:

Fi = [f i1, · · · , f in] =

[
dT

ij1

q
(0)
j1

, · · · , dT
ijn

q
(0)
jn

]T

. (18)

Proof: (i)⇒(ii): Suppose that the statement (i) is satisfied.
On the one hand, as system (5) is positive, it follows from

Lemma 1 that
A

(l)
i + Fi � 0. (19)

By setting fiuv = kijvu/λ
(0)
jv , we have

A
(l)
i + Fi � 0 ⇒ a

(l)
iuv + fiuv ≥ 0

⇒ a
(l)
iuv +

kijvu

λ
(0)
jv

≥ 0

⇒ a
(l)
iuvλ

(0)
ju + kijvu ≥ 0.

(20)

On the other hand, as the SCLF (13) is negative definite,
one can get from (8) that


V (k) = V (k + 1) − V (k)

= x̄T (k + 1)λ(k + 1) + x̄T (k)λ(k)

= x̄T (k)(ĀT (k)λ(k + 1) − λ(k)) < 0.

(21)

Moreover, from the positivity of system (5), we know system
(8) is positive . Therefor, for nonzero x̄T (k) ∈ R

n(h+1)
+ , (21)

implies that
ĀT (k)λ(k + 1) − λ(k) ≺ 0.

Substitution of (6) and (14) yields⎡
⎢⎢⎢⎣

Ā(0)T (k) In · · · 0
...

...
. . .

...
Ā(h−1)T (k) 0 · · · In
Ā(h)T (k) 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ(0)(k + 1)
...

λ(h−1)(k + 1)
λ(h)(k + 1)

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

λ(0)(k)
...

λ(h−1)(k)
λ(h)(k)

⎤
⎥⎥⎥⎦ ≺ 0.

(22)

For all g ∈ H, let λ(h+1)(k+1) = 0, it follows from (22) that

Ā(g)T (k)λ(0)(k + 1) + λ(g+1)(k + 1) − λ(g)(k) ≺ 0. (23)

As this has to be satisfied for arbitrary switching signals, it
implies that (23) has to hold for any special configuration
ξi(k) = 1, ξs�=i(k) = 0, ξj(k + 1) = 1, ξs�=j(k + 1) = 0, s ∈
{1, · · · , n} and for all x̄T (k) ∈ R

n(h+1)
+ . Then, combining

(12) with (14), we obtain

Ã
(l)T
i λ

(0)
j + λ

(l+1)
j − λ

(l)
i ≺ 0, g = h(l)(k),

λ
(g+1)
j − λ

(g)
i ≺ 0, g �= h(l)(k)

for all (g, l, i, j) ∈ H × P × I × I. Furthermore, note that
Ã

(l)T
i = A

(l)
i + Fi, it follows that

A
(l)
i λ

(0)
j + λ

(l+1)
j − λ

(l)
i + Fiλ

(0)
j ≺ 0, g = h(l)(k),

λ
(g+1)
j − λ

(g)
i ≺ 0, g �= h(l)(k).
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Setting fiv = kijv/λ
(0)
j , v ∈ N and taking into account (20),

we thus know that statement (ii) holds.
(ii)⇒ (i): Assume that (ii) is satisfied. Firstly, since

a
(l)
iuvλ

(0)
ju + kijvu ≥ 0, together with (16), one can deduce

that

a
(l)
iuvλ

(0)
ju + kijvu ≥ 0 ⇒ a

(l)
iuv +

kijvu

λ
(0)
jv

≥ 0

⇒ a
(l)
iuv + fiuv ≥ 0

⇒ A
(l)
i + Fi � 0.

This immediately implies that the system (5) is positive. Next,
we shall show that system (5) is stable.

For all (i, j) ∈ I × I, by using (9), it is easy to show that

m∑
i=1

ξi(k) =
m∑

j=1

ξj(k + 1) = 1,
m∑

i=1

ξi(k)
m∑

j=1

ξj(k + 1) = 1.

Taking into account (15), we first consider g �= h(l)(k). From
(16) we thus find

m∑
i=1

ξi(k)
m∑

j=1

ξj(k + 1)×
(
A

(l)T
i λ

(0)
j + λ

(l+1)
j − λ

(l)
i +

n∑
v=1

kijv

)

=
m∑

i=1

ξi(k)
m∑

j=1

ξj(k + 1)×
[(
A

(l)T
i + FT

i

)
λ

(0)
j + λ

(l+1)
j − λ

(l)
i

]

=
m∑

i=1

ξi(k)

⎡
⎣Ã(l)T

i

⎛
⎝ m∑

j=1

ξj(k + 1)λ(0)
j

⎞
⎠

+

⎛
⎝ m∑

j=1

ξj(k + 1)λ(l+1)
j

⎞
⎠− λ

(l)
i

⎤
⎦

=
m∑

i=1

ξi(k)
[
Ã

(l)T
i λ(0)(k + 1) + λ(l+1)(k + 1) − λ

(l)
i

]

= Ã(l)T (k)λ(0)(k + 1) + λ(l+1)(k + 1) − λ(l)(k)
≺ 0 .

Similarly, for g = h(l)(k), it follows that

m∑
i=1

ξi(k)
m∑

j=1

ξj(k + 1)
(
λ

(g+1)
j − λ

(g)
i

)

=
m∑

i=1

ξi(k)

⎡
⎣
⎛
⎝ m∑

j=1

ξj(k + 1)λ(g+1)
j

⎞
⎠− λ

(g)
i

⎤
⎦

=
m∑

i=1

ξi(k)
[
λ(g+1)(k + 1) − λ

(g)
i

]

=λ(g+1)(k + 1) − λ(g)(k)
≺0.

Based on the argument above, we have shown that

Ã(l)T (k)λ(0)(k + 1) + λ(l+1)(k + 1)

− λ(l)(k) ≺ 0, g = h(l)(k),

λ(g+1)(k + 1) − λ(g)(k) ≺ 0, g �= h(l)(k)

(24)

for all (g, l) ∈ H × P .
Furthermore, by using (7) and (14), (24) is equivalent to

ĀT (k)λ(k + 1) − λ(k) ≺ 0. (25)

This corresponds to the SCLF defined as

V (k) = x̄T (k)λ(k). (26)

As we have shown that the system (5) is positive, for nonzero
x̄T (k) ∈ R

n(h+1)
+ , it is easy to check from (25) and (26) that

x̄T (k)
(
ĀT (k)λ(k + 1) − λ(k)

)
= x̄T (k)ĀT (k)λ(k + 1) − λ(k)

= x̄T (k + 1)λ(k + 1) − λ(k) = 
V (k)
< 0.

Note that (15), it follows that 
V (k) ≤ −γ‖x̄(k)‖ with

γ = −max
{
θ
(g)
ijs |∀(g, i, j, s) ∈ H × I × I ×N

}
,

where θ(g)
ijs is the sth element of Ā(g)T

i λ
(0)
j + λ

(g+1)
j − λ

(g)
i

and Ā(g)
i is defined as (10). Therefore, the system (8) is stable,

which implies the stability of closed-loop system (5).
(ii)⇔(iii): The equivalence between statement (ii) and (iii)

obviously holds by setting λ
(g)
iv = q

(g)
iv and kijv = dijv, v ∈

N .
Remark 2: Observe that selecting h(l) ≡ u(k) ≡ 0 in

Theorem 1 reproduces the main result given in [12].
Remark 3: Note that the conditions of the state-feedback

control law in Theorem 1 are presented as a set of linear pro-
gramming (LP) problems and linear matrix inequality (LMI)
problems. Therefore, these conditions are not only checkable
but also numerical. Indeed, Statement (ii) can be solved by
linear programming optimal toolbox. Statement (iii) may be
verified by linear matrix inequality toolbox.

Remark 4: We stress that the stabilization of (5) is inde-
pendent on delays and initial conditions. In other words, the
magnitude of the delays and the choice of the initial condition
does not affect the design of the controller for system (5) and
are completely determined by the system matrices.

Remark 5: In Theorem 1, if we make a stronger assumption
that λ(g)

1 = · · · = λ
(g)
m for all g ∈ H , then the SCLF of

the form (13) is reduced to the common copositive Lyapunov
function. This is shown in the following corollary, which is
straightforward from Theorem 1.

Corollary 1: If there exist h+1 vectors λ(g) satisfying and
m× n vectors kiv = [kiv1, · · · , kivn] ∈ R

n, satisfying

a
(l)
iuvλ

(0)
u + kivu ≥ 0,

A
(l)T
i λ(0) + λ(l+1) − λ(l) +

n∑
v=1

kiv ≺ 0, g = h(l)(k),

λ(g+1) − λ(g) ≺ 0, g �= h(l)(k)
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with A
(l)
i = [a(l)

iuv]. Then the switched system (5) is positive
and stable. Moreover, the gain matrices Fi can be calculated
as follows:

Fi = [f i1, f i2, · · · , f in] =

[
kT

i1

λ
(0)
1

,
kT

i2

λ
(0)
2

, · · · , kT
in

λ
(0)
n

]T

.

In the following Corollary, we will consider the system (3)
with u(k) ≡ 0 to be positive, and provide the following
stability criteria.

Corollary 2: For all (g, l, i, j, s) ∈ H × P × I × I × N ,
if the system (3) with u(k) ≡ 0 satisfies A(l)

i � 0, then the
following statements are equivalent:

(i) There exists a SCLF of the form (13) whose difference
is negative definite, proving the stability of (3).

(ii) (LP problem) There exist m×(h+1) vectors λ(g)
i ∈ R

n
+,

satisfying

A
(l)T
i λ

(0)
j + λ

(l+1)
j − λ

(l)
i ≺ 0, g = h(l)(k),

λ
(g+1)
j − λ

(g)
i ≺ 0, g �= h(l)(k).

(iii) (LMI problem) There exist m× (h+1) matrices Q(g)
i =

diag
(
q
(g)
i1 , q

(g)
i2 , · · · , q

(g)
in

)
> 0 such that

Φ(l)
ij < 0, g = h(l)(k),

Q
(g+1)
j −Q

(g)
i < 0, g �= h(l)(k),

where

Φ(l)
ij = diag

(
φ

(l)
ij1, φ

(l)
ij2, · · · , φ(l)

ijn

)
,

φ
(l)
ijs = a(l)T

is q(0)
j + q

(l+1)
js − q

(l)
is

with q(0)
j = [q(0)i1 , q

(0)
i2 , · · · , q(0)in ]T and a(l)

is is the sth
column vector of A(l)

i .

IV. EXAMPLE

In this section, an example is given to verify technically
feasibility and operability of the developed results.

Example 1: Consider the switched closed-loop system with
bounded time-varying delays (5) given by

x(k + 1) =(A(0)
i + Fi)x(k)

+ (A(1)
i + Fi)x(k − h(1)(k)),

x(0) = ϕ(k) � 0, k = −1, 0,

(27)

where x(k) ∈ R
2, i = 1, 2, 0 ≤ h(1)(k) ≤ 1 and

A
(0)
1 =

[
0.1 −0.2

−0.12 −0.2

]
, A

(1)
1 =

[−0.1 −0.1
−0.2 0.08

]
,

A
(0)
2 =

[−0.3 −0.1
0.3 0.1

]
, A

(1)
2 =

[−0.4 0.1
0.2 −0.2

]
.

Obviously, the state of system (27) may be nonpositive for all
x(0) � 0. Using state-feedback we want to stabilize the system
and enforce the state to be positive and stable. Applying
Theorem 1, one feasible solution of the LP problem provides

λ
(0)
1 = [0.9155 0.7332]T , λ(1)

1 = [0.3515 0.5433]T ,

λ
(0)
2 = [0.9454 0.8726]T , λ(1)

2 = [0.3828 0.4296]T ,

and

k111 = [0.1945 0.2999]T ,k112 = [0.2705 0.2132]T ,

k121 = [0.2008 0.3097]T ,k122 = [0.3219 0.2538]T ,

k211 = [0.3823 0.1802]T ,k212 = [0.1587 0.1623]T ,

k221 = [0.3948 0.1861]T ,k222 = [0.1889 0.1932]T .

By using this solution, together with (16), a controller can be
obtained as

F1 =
[
0.2124 0.3276
0.3689 0.2908

]
, F2 =

[
0.4176 0.1968
0.2165 0.2214

]
.

With this controller the closed-loop system (27) is positive
and stable. See Fig. 1, Fig. 2, and Fig. 3. Where the initial
randomly generated in [25 30] × [25 30], the time delays
randomly takes value in {0, 1}, and the switching signal is
also randomly generated. Fig. 1 show the response of the state
variables. The mark ‘*’ in the Fig. 2 describes the state change.
Fig. 3 connects all the sampling points into a continuous
trajectory.
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20

25

30

35

t

x
(t

)
x1(t)
x2(t)

Fig. 1. The state variables of system (27).
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Fig. 2. The trajectory of system (27).
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Fig. 3. The trajectory of system (27).
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V. CONCLUSIONS

By means of SCLF, two necessary and sufficient condi-
tions for the existence of state-feedback controller have been
presented for switched linear positive systems with bounded
time-varying delays. The advantages of the results lies in
two aspects. First, all the results are formulated as linear
programming or linear matrix inequality problems, hence easy
to be solved. Second, the existence of controller is not affected
by the size of delays and the choice of initial condition. Such
advantages have been shown in the numerical example.
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