Search results for: Geometrical optics & geometrical theory of diffraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2078

Search results for: Geometrical optics & geometrical theory of diffraction

2018 Fluid Differential Agitators

Authors: Saeed Asiri

Abstract:

This research is to design and implement a new kind of agitators called differential agitator. The Differential Agitator is an electro- mechanic set consists of two shafts. The first shaft is the bearing axis while the second shaft is the axis of the quartet upper bearing impellers group and the triple lower group which are called as agitating group. The agitating group is located inside a cylindrical container equipped especially to contain square directors for the liquid entrance and square directors called fixing group for the liquid exit. The fixing group is installed containing the agitating group inside any tank whether from upper or lower position. The agitating process occurs through the agitating group bearing causing a lower pressure over the upper group leading to withdrawing the liquid from the square directors of the liquid entering and consequently the liquid moves to the denser place under the quartet upper group. Then, the liquid moves to the so high pressure area under the agitating group causing the liquid to exit from the square directors in the bottom of the container. For improving efficiency, parametric study and shape optimization has been carried out. A numerical analysis, manufacturing and laboratory experiments were conducted to design and implement the differential agitator. Knowing the material prosperities and the loading conditions, the FEM using ANSYS11 was used to get the optimum design of the geometrical parameters of the differential agitator elements while the experimental test was performed to validate the advantages of the differential agitators to give a high agitation performance of lime in the water as an example. In addition, the experimental work has been done to express the internal container shape in the agitation efficiency. The study ended up with conclusions to maximize agitator performance and optimize the geometrical parameters to be used for manufacturing the differential agitator

Keywords: Differential Agitators, Parametric Optimization, Shape Optimization, Agitation, FEM, ANSYS11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3675
2017 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: Possibility distribution, parameters estimation, Maxmin u/E estimator, fuzzy model identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
2016 Development of Material Analyzing Software Using X-Ray Diffraction

Authors: Le Chi Cuong

Abstract:

X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.

Keywords: X-ray diffraction, Nondestructive evaluation, Hardness, Residual stress, Phase determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
2015 Investigation of Electromagnetic Force in 3P5W Busbar System under Peak Short-Circuit Current

Authors: Farhana Mohamad Yusop, Syafrudin Masri, Dahaman Ishak, Mohamad Kamarol

Abstract:

Electromagnetic forces on three-phase five-wire (3P5W) busbar system is investigated under three-phase short-circuits current. The conductor busbar placed in compact galvanized steel enclosure is in the rectangular shape. Transient analysis from Opera-2D is carried out to develop the model of three-phase short-circuits current in the system. The result of the simulation is compared with the calculation result, which is obtained by applying the theories of Biot Savart’s law and Laplace equation. Under this analytical approach, the moment of peak short-circuit current is taken into account. The effect upon geometrical arrangement of the conductor and the present of the steel enclosure are considered by the theory of image. The result depict that the electromagnetic force due to the transient short-circuit from simulation is agreed with the calculation.

Keywords: Busbar, electromagnetic force, short-circuit current, transient analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3937
2014 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: Biometrics, hand geometry features, inner knuckle print, recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
2013 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
2012 Calibration Method for an Augmented Reality System

Authors: S. Malek, N. Zenati-Henda, M. Belhocine, S. Benbelkacem

Abstract:

In geometrical camera calibration, the objective is to determine a set of camera parameters that describe the mapping between 3D references coordinates and 2D image coordinates. In this paper, a technique of calibration and tracking based on both a least squares method is presented and a correlation technique developed as part of an augmented reality system. This approach is fast and it can be used for a real time system

Keywords: Camera calibration, pinhole model, least squares method, augmented reality, strong calibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
2011 Fundamental Groups in Chaotic Flat Space and Its Retractions

Authors: A. E. El-Ahmady, M. Abu-Saleem

Abstract:

The purpose of this paper is to give a combinatorial characterization and construct representations of the chaotic fundamental groups of the chaotic submanifolds of chaotic flat space by using some geometrical transformations. The chaotic homotopy groups of the limit folding for chaotic flat space are presented. The chaotic fundamental groups of some types of chaotic geodesics in chaotic flat space are deduced.

Keywords: Chaotic flat space, Chaotic folding, Chaotic retractions, Chaotic fundamental groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2010 Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations

Authors: El Kaak Rachid, El Bikri Khalid, Benamar Rhali

Abstract:

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness. 

Keywords: Non-linear vibrations, Circular plates, Pasternak foundation, functionally graded materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
2009 Detecting Circles in Image Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: Image processing, median filter, projection, scalespace, segmentation, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
2008 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: Bulk viscosity, Lyra geometry, generalized Chaplygin gas, cosmology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
2007 Fin Spacing Effect of the Tube Fin Heat Exchanger at the Floor Heating Convector

Authors: F. Lemfeld, K. Frana

Abstract:

This article deals with numerical simulation of the floor heating convector in 3D. Numerical simulation is focused on cooling mode of the floor heating convector. Geometrical model represents section of the heat exchanger – two fins with the gap between, pipes are not involved. Two types of fin are examined – sinusoidal and angular shape with different fin spacing. Results of fin spacing in case of constant Reynolds number are presented. For the numerical simulation was used commercial software Ansys Fluent.

Keywords: fin spacing, cooling output, floor heating convector, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2006 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: Motion planning, SCARA robot, trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
2005 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, and trajectories. This paper proposes three visual analytics approaches for higher order information of trajectory datasets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical, topological, and directional information. Experimental resultsdemonstrate the applicability and usefulness of proposed three approaches.

Keywords: Visual Analytics, Higher Order Information, Trajectory Datasets, Spatio-temporal data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2004 Some Results on the Generalized Higher Rank Numerical Ranges

Authors: Mohsen Zahraei

Abstract:

In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for Є > 0, the notion of Birkhoff-James approximate orthogonality sets for Є−higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.

Keywords: Rank−k numerical range, isometry, numerical range, rectangular matrix polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2003 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
2002 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
2001 Ottoman Script Recognition Using Hidden Markov Model

Authors: Ayşe Onat, Ferruh Yildiz, Mesut Gündüz

Abstract:

In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM).

Keywords: Chain Code, HMM, Ottoman Script Recognition, OCR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
2000 Magnetic Field Based Near Surface Haptic and Pointing Interface

Authors: Kasun Karunanayaka, Sanath Siriwardana, Chamari Edirisinghe, Ryohei Nakatsu, PonnampalamGopalakrishnakone

Abstract:

In this paper, we are presenting a new type of pointing interface for computers which provides mouse functionalities with near surface haptic feedback. Further, it can be configured as a haptic display where users may feel the basic geometrical shapes in the GUI by moving the finger on top of the device surface. These functionalities are achieved by tracking three dimensional positions of the neodymium magnet using Hall Effect sensors grid and generating like polarity haptic feedback using an electromagnet array. This interface brings the haptic sensations to the 3D space where previously it is felt only on top of the buttons of the haptic mouse implementations.

Keywords: Pointing interface, near surface haptic feedback, tactile display, tangible user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1999 Texture Observation of Bending by XRD and EBSD Method

Authors: Takashi Sakai, Yuri Shimomura

Abstract:

The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.

Keywords: Bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1998 Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials

Authors: Hakim S. Sultan Aljibori

Abstract:

Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.

Keywords: Crushing behavior, jute fiber, composite tubes andSpecific energy absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1997 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Authors: M. Altekin, R. F. Yükseler

Abstract:

Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

Keywords: Bending, nonlinear, plate, point support, shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1996 Seismic Time History Analysis for Cable-Stayed Bridge Considering Different Geometrical Configuration For Near Field Earthquakes

Authors: Atul K. Desai

Abstract:

To increase the maximum span of cable-stayed bridges, Uwe Starossek has developed a modified statical system. The basic idea of this new concept is the use of pairs of inclined pylon legs that spread out longitudinally from the foundation base or from the girder level. Spread-pylon cable-stayed bridge has distinct advantage like reduction of sag of cables and oscillation of cable during earthquake over traditional cable-stayed bridges. Spread-pylon also improves seismic performance of deck during strong ground motion.

Keywords: Different geometry of cable stayed bridge, seismic time history analysis, earthquake displacement ratio, response mode shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260
1995 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis

Abstract:

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

Keywords: Drilling, CAD based simulation, 3D-modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
1994 Printed Arabic Sub-Word Recognition Using Moments

Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh

Abstract:

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1993 Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction

Authors: Bahram Talebjedi, Amirmohammad Sattari, Ahmed Zoher Sihorwala, Mina Hoorfar

Abstract:

Among different droplet manipulations, controlled droplet-splitting is of great significance due to its ability to increase throughput and operational capability. Furthermore, unequal droplet-splitting can provide greater flexibility and a wider range of dilution factors. In this study, we developed two-dimensional, time-dependent complex fluid dynamics simulations to model droplet formation in a flow focusing device, followed by splitting in a Y-shaped junction with sub-channels of unequal widths. From the results obtained from the numerical study, we correlated the diameters of the droplets in the sub-channels to the Weber number, thereby demarcating the droplet splitting and non-splitting regimes.

Keywords: Microfluidics, unequal droplet splitting, two phase flow, flow focusing device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
1992 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
1991 Electromagnetic Flow Meter Efficiency

Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva

Abstract:

A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.

Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
1990 Modeling Concave Globoidal Cam with Swinging Roller Follower : A Case Study

Authors: Nguyen Van Tuong, Premysl Pokorny

Abstract:

This paper describes a computer-aided design for design of the concave globoidal cam with cylindrical rollers and swinging follower. Four models with different modeling methods are made from the same input data. The input data are angular input and output displacements of the cam and the follower and some other geometrical parameters of the globoidal cam mechanism. The best cam model is the cam which has no interference with the rollers when their motions are simulated in assembly conditions. The angular output displacement of the follower for the best cam is also compared with that of in the input data to check errors. In this study, Pro/ENGINEER® Wildfire 2.0 is used for modeling the cam, simulating motions and checking interference and errors of the system.

Keywords: Globoidal cam, sweep, pitch surface, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3633
1989 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448