Some Results on the Generalized Higher Rank Numerical Ranges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Some Results on the Generalized Higher Rank Numerical Ranges

Authors: Mohsen Zahraei

Abstract:

In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for Є > 0, the notion of Birkhoff-James approximate orthogonality sets for Є−higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.

Keywords: Rank−k numerical range, isometry, numerical range, rectangular matrix polynomials.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108765

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586

References:


[1] A. Aretaki and J. Maroulas, On the rank−k numerical range of matrix polynomials, Electronic J. Linear Algebra, vol. 27, 2014, pp. 809-820.
[2] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, New York: Cambridge University Press, 1971.
[3] M.D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. vol. 10, 1975, pp. 285-290.
[4] M.D. Choi, M. Giesinger, J.A. Holbrook and D.W. Kribs, Geometry of higher rank numerical ranges, Linear Multilinear Algebra, vol. 56, 2008, pp. 53-64.
[5] C. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of rectangular matrices, Linear Multilinear Algebra, vol. 51, 2009, pp. 459-475.
[6] C. Chorianopoulos and P. Psarrakos, Birkhoff-James approximate orthogonality sets and numerical ranges, Linear Algebra Appl. vol. 434, 2011, pp. 2089-2108.
[7] S. Clark, C.K. Li and N.S. Sze, Multiplicative maps preserving the higher rank numerical ranges and radii, Linear Algebra Appl. vol. 432, 2010, pp. 2729-2738.
[8] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, New York: Academic Press, 1982.
[9] K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, New York: Springer-Verlage, 1997.
[10] R. Horn and C. Johnson, Topics in Matrix Analysis, New York: Cambridg University Press, 1991.
[11] D.W . Kribs, R. Laflamme, D. Poulin and M. Lesosky, Operator quantum error correction, Quant. Inf. Comput. vol. 6, 2006, pp. 383-399.
[12] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Orland: Academic Press, 1985.
[13] C.K. Li and L. Rodman, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl. vol. 15, 1994, pp. 1256-1265.
[14] J.G. Stampfli and J.P. Williams, Growth conditions and the numerical range in a Banach algebra, T. Math. J. vol. 20, 1968, pp. 417-424.
[15] M. Zahraei and Gh. Aghamollaei, Higher rank numerical ranges of rectangular matrices, Ann. Func. Anal. vol. 6, 2015, pp. 133-142.