
 

 

  
Abstract—In the present study, the problem of geometrically 

nonlinear free vibrations of functionally graded circular plates 
(FGCP) resting on Pasternak elastic foundation with immovable ends 
was studied. The material properties of the functionally graded 
composites examined were assumed to be graded in the thickness 
direction and estimated through the rule of mixture. The theoretical 
model is based on the classical Plate theory and the Von Kármán 
geometrical nonlinearity assumptions. Hamilton’s principle is applied 
and a multimode approach is derived to calculate the fundamental 
nonlinear frequency parameters, which are found to be in a good 
agreement with the published results dealing with the problem of 
functionally graded plates. On the other hand, the influence of the 
foundation parameters on the nonlinear frequency to the linear 
frequency ratio of the FGCP has been studied. The effect of the linear 
and shearing foundations is to decrease the frequency ratio, where it 
increases with the effect of the nonlinear foundation stiffness.  

 
Keywords—Non-linear vibrations, Circular plates, Pasternak 

foundation, functionally graded materials. 

I. INTRODUCTION 
N recent years, functionally graded materials (FGMs) have 
gained much popularity as materials to be used in structural 

components exposed to extremely high-temperature 
environments such as nuclear reactors and high-speed 
spacecraft industries. FGMs are composite materials that are 
microscopically inhomogeneous, and their mechanical 
properties vary smoothly or continuously from one surface to 
the other. Typically, these materials are made from a mixture 
of ceramic and metal, or a combination of different materials. 
The concept of FGMs was first introduced in Japan in 1984 
[1], [2]. Since then, it has gained considerable attention. FGMs 
have various available or potential applications in many fields 
such as aerospace engineering, electrical engineering, 
biomedical engineering, and architecture engineering [3], [4]. 
Thin plate structures are commonly used in these engineering 
applications, and they are often subjected to severe dynamic 
loading, which may result in large vibration amplitudes. When 
the amplitude of vibration is of the same order of the plate 
thickness, a significant geometrical nonlinearity is induced 
and linear models are not sufficient to predict the dynamic 
behavior of the plate which may exhibit many new features, 
such as the amplitude dependence of the frequency and mode 
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shapes on the amplitude of vibration and the jump 
phenomenon. 

Geometrically nonlinear vibration of plates has long been a 
subject receiving numerous research efforts. Numerous studies 
have been reported in open literature, such as those of 

Haterbouch and Benamar [5] presented a more complete 
study for the effects of large vibration amplitudes on the 
axisymmetric mode shapes and natural frequencies of clamped 
thin isotropic circular plates. Allahverdizadeh et al. [6] who 
investigated the nonlinear free and forced vibration of thin 
circular functionally graded plates by using assumed-time-
mode method and Kantorovich time averaging technique. 
After that, Zhou et al. [7] analyzed the Natural vibration of 
circular and annular thin plates by Hamiltonian approach, and 
the nonlinear theories of axisymmetric bending of functionally 
graded circular plates with modified couple stress are 
developed by Reddy and Jessica Berry [8]. The method of 
differential quadrature, which has been successfully used in 
solving boundary value problems, has also been extended to 
solve initial value problems of plates and was used to 
discretize the time domain [9], [10], Civalek [11] also studied 
the geometrically nonlinear dynamic problem of thin 
rectangular plates resting on Winkler–Pasternak two 
parameter elastic foundation by discretizing the governing 
nonlinear partial differential equations of the plate in space 
and time domains using the discrete singular convolution and 
harmonic differential quadrature methods. Recently, Zerkane 
et al [12] solved a homogenization procedure for nonlinear 
free vibration analysis of functionally graded beams resting on 
nonlinear elastic foundations. 

In the present paper, the problem of geometrically nonlinear 
free vibrations of clamped FGCP with immovable ends resting 
on linear and nonlinear Pasternak elastic foundation is 
investigated using Hamilton’s principle and spectral analysis. 
Based on the governing axial equation of the circular plate in 
which the axial inertia and damping are ignored. The spectral 
expansion used in the model is discussed here for the first non-
linear axisymmetric mode shape. 

II. FUNCTIONALLY GRADED MATERIALS 
In this section, we consider a clamped-clamped FGCP 

having the geometrical characteristics shown in Fig. 1. It is 
assumed that the FGCP is made of ceramic and metal, and the 
effective material properties of the FGCP, Young’s modulus E 
and mass density ρ, are functionally graded in the thickness 
direction according to a function of the volume fractions V of 
the constituents.  
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Fig. 1 Geometry of a FG clamped circular plate with Pasternak elastic 

foundation 
 

According to the rule of mixture, the effective material 
properties P can be expressed as: 
 

                       (1) 
 
where subscripts “m” and “c” refer to the metal and ceramic 
constituents, respectively. A simple power law is considered 
here to describe the variation of the volume fraction of the 
metal and the ceramic constituents as follows: 
 

 ⁄ 1 2⁄                (2) 
 
where h is the structure thickness, and n (0 ≤ n ≤ ∞) is a 
volume fraction exponent, 

With 1m cV V+ =  n is a non-negative parameter (power-law 
exponent) which dictates the material variation profile through 
the thickness of the plate.  

Effective material properties P of the CFGP such as 
Young’s modulus (E) and mass density (ρ) can be determined 
by substituting (2) into (1), which gives:

                  
 

 
 ⁄ 1 2⁄              (3) 

III. NONLINEAR FREE VIBRATION ANALYSIS 
Consider a fully clamped thin circular plate of a uniform 

thickness h and a radius a. The co-ordinate system is chosen 
such that the middle plane of the plate coincides with the polar 
coordinates (r, θ), the origin of the co-ordinate system being at 
the centre of the plate with the z-axis downward, as depicted 
in Fig. 1. The plate is made of a mixture of ceramic and metal. 
Considering axisymmetric vibrations of the circular plate, the 
displacements are given in accordance with classical plate 
theory by [13]: 
 

, , , , ⁄ , , 0 , , ,  (4) 
         
where U and W are the in-plane and out-of-plane 
displacements of the middle plane point (r, θ, 0) respectively, 
and ur,uθ and uz are the displacements along r , θ and z 
directions, respectively. The non-vanishing components of the 
strain tensor in the case of large displacements are given by 
Von-Karman relationships: 
 

             (5) 
 

In which {ε0}, {K} and {λ0} are given by: 

⁄
⁄                               (6) 

 

⁄ ⁄                           (7) 
 

⁄ ⁄         (8) 
 
For the FGM circular plate shown in Fig. 1, the stress can 

be expressed as: 
 
                                                            (9) 

 
In which {σ} = [σr σθ]T and the terms of the matrix [Q] can 

be obtained by the relationships given in [8]. The force and 
moment resultants are defined by: 
 

,  ,                       (10) 

 

,  ,                         (11) 

 
The in-plane forces and bending moments in the plate are   

given by:  
 

                       (12) 
 
A, B and D are symmetric matrices given by the following 

equation: 
 

 , ,  1, ,            (13) 

 
Here, the Qij’s are the reduced stiffness coefficients of the 

plate. The expression for the bending strain energy Vb, the 
membrane strain energy Vm, the coupling strain energy Vc and 
the kinetic energy T are given by: 
 

 ⁄  1⁄  ⁄
   2 ⁄  ⁄  ⁄           (14) 

 

  ⁄  ⁄ ⁄  

  2 ⁄  ⁄ ⁄  ⁄  

  ⁄ ⁄               (15) 
 

  ⁄  ⁄  ⁄  ⁄  ⁄    
(16) 

and  
   ⁄                        (17) 

 

  
h 

E m , ρm 

E c , ρc 

r 
a 

M(r,θ,0) 

a 

 
 

 ,  

,  
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where I0 is the inertial term given by:  
 

                            (18) 
 

An approximation has been adopted in the present work 
consisting on neglecting the contribution of the in-plane 
displacement U in the membrane strain energy expression. 
Such an assumption of neglecting the in-plane displacements 
in the non-linear plate strain energy has been made in Refs. 
[14], [15] when calculating the first two non-linear mode 
shapes of fully clamped rectangular plates. For the first non-
linear mode shape, the range of validity of this assumption has 
been discussed in the light of the experimental and numerical 
results obtained for the non-linear frequency–amplitude 
dependence and the non-linear bending stress estimates 
obtained at large vibration amplitude [15], [16]. In order to 
examine the effects of large vibration amplitudes on the 
membrane stress patterns for clamped circular plates. The 
assumption introduced above leads to: 
 

  4⁄  ⁄               (19) 
 

The strain energy of the elastic foundation fV  of the CFGP 

is given by: 
 

      

                                                           (20) 
 
where KL and KNL are the linear and the non linear foundation 
stiffness respectively. KS is the shear modulus of Pasternak 
foundation .For a general parametric study; we use the 
following non dimensional formulation by putting:  
 

⁄                    (21) 
 

 ⁄                                  (22) 
 

Applying Hamilton’s principle and expanding the 
displacement W in the form of a finite series, the following set 
of nonlinear algebraic equations is obtained: 

 
2 3 8⁄ 2 0 (23) 
 

where mij
* , k ij

*  , bijkl
*  and c

s
ijk

* stand for the non dimensional 

mass tensor, the linear rigidity tensor, the fourth order non-
linear rigidity tensor and the third order non-linear coupling 
tensor, respectively, which are defined as: 
 

⁄ ⁄
1⁄ ⁄ ⁄

2 ⁄ ⁄ ⁄   

                      (24) 

  ⁄ ⁄ ⁄   

 ⁄ ⁄ ⁄ ⁄   

(25) 
 

                        (26) 
 

 ⁄ ⁄ ⁄ ⁄   

                (27) 
 
where α , β , K*

L, K*
NL and K*

S are given by: 
 

 4⁄                                       (28) 
   ⁄                                (29) 

 ⁄                                                  (30) 
     2 ⁄                                          (31) 

                                                        (32)                       

 
To obtain the nonlinear free response of a clamped-clamped 

FGCP in the neighborhood of its first resonant frequency, the 
values of the linear rigidity matrix K*

ij and the nonlinear 
geometrical rigidity tensor b*

ijkl have been calculated using the 
first six normalized symmetric linear circular plate function, 
w*

1, w*
2 ,....., w*

6 .The functions have been normalized in such 
a manner that the obtained mass matrix equals the identity 
matrix. 

IV. NUMERICAL RESULTS AND DISCUSSIONS  
In the problem considered herein, the top surface of the 

FGCP is ceramic rich (Ec=384.43e9GPa, υc=0.3, 
ρc=2370Kg/m3), whereas the bottom surface of the FGCP is 
metal rich (Em=201.04e9GPa, υm=0.3, ρm=8166 Kg/m3). 

 
TABLE I 

FREQUENCY RATIO Ω*
NL / Ω*

L OF A CLAMPED CIRCULAR ISOTROPIC PLATE 
W*

Max 
Present Work  

2013 
[6]  

2008 
[5]  

2003 
0.2 1.0108 1.0075 1.0072 
0.4 1.0421 1.0296 1.0284 
0.5 1.0648 1.0459 1.0439 
0.6 1.0916 1.0654 1.0623 
0.8 1.1560 1.1135 1.1073 
1.0 1.2318 1.1724 1.1615 

 
In Table I, the first nonlinear frequency ratios ω*

nl / ω*
l, 

calculated in the present work at various vibration amplitudes, 
is compared with the results obtained in [5], [6]. It is noted 
that the solution given in the present work overestimates the 
frequencies of the clamped circular isotropic plate, especially 
for high values of dimensionless amplitude. This discrepancy 
is mainly due to the fact that the axial displacements have 
been neglected in the expression of the axial strain energy. 
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TABLE II 
FREQUENCY RATIO Ω*

NL / Ω*
L OF A CLAMPED CIRCULAR FG PLATE AT 

T=300(K) 

T(K) n W*
Max 

Present Work 
2013 

From graph [6] 
2008 

300 0.5 0.2 1.0110 1.0068 
  0.4 1.0430  1.0275 
  0.5 1.0663  1.0413 
  0.6 1.0935  1.0586 
  0.8 1.1593  1.1034 
  1.0 1.2363  1.1586 

 
The same comparison has been conducted in the case of 

circular functionally graded plate. As expected, the frequency 
ratios obtained with the present model are higher than those 
obtained in [6]. Especially for large vibration amplitudes for 
which the contribution of axial displacement becomes 
significant.   

 

 
Fig. 2 Effect of the linear elastic foundation stiffness on the 

fundamental frequency ratio, case of n=0.5 
 

 
Fig. 3 Effect of the non linear elastic foundation stiffness on the 

fundamental frequency ratio, case of n=0.5 

 
Fig. 4 Effect of the shearing elastic foundation stiffness on the 

fundamental frequency ratio, case of n=0.5 
 

It can be shown from Figs. 2-4 that an increase in the value 
of linear elastic foundation stiffness leads to a decrease in the 
nonlinear to linear frequency ratio. On the other hand, this 
ratio enhances with an increase in nonlinear elastic foundation 
stiffness. 

V. CONCLUSION 
The present study deals with the problem of geometrically 

nonlinear free vibrations of a clamped-clamped FGCP resting 
on Pasternak elastic foundations. The main feature of the 
present contribution is the fact that the existing analytical 
solutions, numerical techniques and software developed over 
the years for the nonlinear analysis of isotropic circular plates 
can be easily used for FGCP case. On the other hand, the 
influence of the foundation parameters on the nonlinear 
fundamental frequency has been studied. The effect of the 
linear and the shearing foundation is to decrease the nonlinear 
frequency ratio of the FGCP, whereas the effect of the 
nonlinear foundation stiffness is to stiffen the nonlinear 
response. It’s expected in future work to complete the present 
model by taking into account the contribution of the axial 
displacement in the membrane strain energy expression in 
order to improve the frequency precision and to determine the 
membrane stresses which cannot be  obtained with the present 
formulation. 
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