Search results for: Cutting force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1064

Search results for: Cutting force

1004 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300m/min cutting speed and 1140mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded KType thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: Composites, Trimming, Thermal Damage, Surface Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1003 Analysis of Chatter in Ball End Milling by Wavelet Transform

Authors: S. Tangjitsitcharoen

Abstract:

The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.

Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
1002 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel

Authors: Tadahiro Wada, Koji Iwamoto

Abstract:

In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.

Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
1001 Tool Damage and Adhesion Effects in Turning and Drilling of Hardened Steels

Authors: Chris M. Taylor, Ian Cook, Raul Alegre, Pedro Arrazola, Phil Spiers

Abstract:

Noteworthy results have been obtained in the turning and drilling of hardened high-strength steels using tungsten carbide based cutting tools. In a finish turning process, it was seen that surface roughness and tool flank wear followed very different trends against cutting time. The suggested explanation for this behaviour is that the profile cut into the workpiece surface is determined by the tool’s cutting edge profile. It is shown that the profile appearing on the cut surface changes rapidly over time, so the profile of the tool cutting edge should also be changing rapidly. Workpiece material adhered onto the cutting tool, which is also known as a built-up edge, is a phenomenon which could explain the observations made. In terms of tool damage modes, workpiece material adhesion is believed to have contributed to tool wear in examples provided from finish turning, thread turning and drilling. Additionally, evidence of tool fracture and tool abrasion were recorded.

Keywords: Turning, drilling, adhesion, wear, hard steels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1000 Production Planning and Measuring Method for Non Patterned Production System Using Stock Cutting Model

Authors: S. Homrossukon, D. Aromstain

Abstract:

The simple methods used to plan and measure non patterned production system are developed from the basic definition of working efficiency. Processing time is assigned as the variable and used to write the equation of production efficiency. Consequently, such equation is extensively used to develop the planning method for production of interest using one-dimensional stock cutting problem. The application of the developed method shows that production efficiency and production planning can be determined effectively.

Keywords: Production Planning, Parallel Machine, Production Measurement, Cutting and Packing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
999 Sensitivity and Removed THD of a Phase- Cutting Dimmer

Authors: H. Fathabadi

Abstract:

In this paper, we consider a designed and implemented phase-cutting dimmer. In fact, the dimmer is closed loop and a microcontroller calculates and then regulates the firing delay angles of each channel. Depending on the firing angle, the harmonic distortion in the input current will not comply with international standards, such as IEC 61000-3-2 (class C equipments). For solving this problem, eight harmonic compensators have been added to the dimmer. So, the proposed dimmer has a little harmonic distortion in the input current whereas conventional phase-cutting dimmers are not so. Sensitivity and removed THD of the proposed dimmer will be presented.

Keywords: Dimmer, compensator, harmonic, dimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
998 Determining the Workability of the New Metallurgical Materials

Authors: Ondrej Dupala, Josef Brychta, Robert Cep, Adam Janasek

Abstract:

The aim of this paper is to experimentally discover the workability coefficient of the Inconel 718 material by using a slide turning machining. Two different types of cutting inserts, one made of carbide and the other one made of ceramic, are being used. The purpose is to compare measured results and recommend the appropriate materials and cutting parameters for a machining of the Inconel 718. Furthermore, the durability of inserts with the chosen wear criterion is being compared for different cutting speeds. Machinability of these materials is a crucial characteristic as it allows us to shorten the technological cycle time and increase the machining productivity. And this is of great importance from an economic point of view.

Keywords: Workability, Inconel 718, Turning Machining, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
997 Experimental Investigation of the Maximum Axial Force in the Folding Process of Aluminum Square Columns

Authors: A. Niknejad, G. H. Liaghat, A. H. Behravesh, H. Moslemi Naeini

Abstract:

In this paper, a semi empirical formula is presented based on the experimental results to predict the first pick (maximum force) value in the instantaneous folding force- axial distance diagram of a square column. To achieve this purpose, the maximum value of the folding force was assumed to be a function of the average folding force. Using the experimental results, the maximum value of the force necessary to initiate the first fold in a square column was obtained with respect to the geometrical quantities and material properties. Finally, the results obtained from the semi empirical relation in this paper, were compared to the experimental results which showed a good correlation.

Keywords: Honeycomb, folding force, square column, aluminum, axial loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
996 Influence of Composition and Austempering Temperature on Machinability of Austempered Ductile Iron

Authors: Jagmohan Datt, Uma Batra

Abstract:

Present investigations involve a systematic study on the machinability of austempered ductile irons (ADI) developed from four commercially viable ductile irons alloyed with different contents of 0, 0.1, 0.3 and 0.6 wt.% of Ni. The influence of Ni content, amount of retained austenite and hardness of ADI on machining behavior has been conducted systematically. Austempering heat treatment was carried out for 120 minutes at four temperatures- 270oC, 320oC, 370oC or 420oC, after austenitization at 900oC for 120 min. Milling tests were performed and machinability index, cutting forces and surface roughness measurements were used to evaluate the machinability. Higher cutting forces, lower machinability index and the poorer surface roughness of the samples austempered at lower temperatures indicated that austempering at higher temperatures resulted in better machinability. The machinability of samples austempered at 420oC, which contained higher fractions of retained austenite, was superior to that of samples austempered at lower temperatures, indicating that hardness is an important factor in assessing machinability in addition to high carbon austenite content. The ADI with 0.6% Ni, austempered at 420°C for 120 minutes, demonstrated best machinability.

Keywords: Austempering, machinability, machining index, cutting force, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
995 Wear Mechanisms in High Speed Steel Gear Cutting Tools

Authors: M. Jalali Azizpour, H. Mohammadi majd

Abstract:

In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.

Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297
994 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology

Authors: Salah Gariani, Taher Dao, Ahmed Lajili

Abstract:

This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.

Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
993 The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedestrian Movement

Authors: Zarita Zainuddin, Mohammed Mahmod Shuaib, Ibtesam M. Abu-Sulyman

Abstract:

The social force model which belongs to the microscopic pedestrian studies has been considered as the supremacy by many researchers and due to the main feature of reproducing the self-organized phenomena resulted from pedestrian dynamic. The Preferred Force which is a measurement of pedestrian-s motivation to adapt his actual velocity to his desired velocity is an essential term on which the model was set up. This Force has gone through stages of development: first of all, Helbing and Molnar (1995) have modeled the original force for the normal situation. Second, Helbing and his co-workers (2000) have incorporated the panic situation into this force by incorporating the panic parameter to account for the panic situations. Third, Lakoba and Kaup (2005) have provided the pedestrians some kind of intelligence by incorporating aspects of the decision-making capability. In this paper, the authors analyze the most important incorporations into the model regarding the preferred force. They make comparisons between the different factors of these incorporations. Furthermore, to enhance the decision-making ability of the pedestrians, they introduce additional features such as the familiarity factor to the preferred force to let it appear more representative of what actually happens in reality.

Keywords: Pedestrian movement, social force model, preferredforce, familiarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
992 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum

Authors: Dunwen Zuo, Yongfang Deng, Bo Song

Abstract:

An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.

Keywords: FSJ, force factor, AA2024, friction stir joining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
991 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Keywords: Electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, Electroadhesive grippers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
990 Theoretical Investigation of the Instantaneous Folding Force during the First Fold Creation in a Square Column

Authors: A. Niknejad, G. H. Liaghat, A. H. Behravesh, H. Moslemi Naeini

Abstract:

In this paper, a theoretical formula is presented to predict the instantaneous folding force of the first fold creation in a square column under axial loading. Calculations are based on analysis of “Basic Folding Mechanism" introduced by Wierzbicki and Abramowicz. For this purpose, the sum of dissipated energy rate under bending around horizontal and inclined hinge lines and dissipated energy rate under extensional deformations are equated to the work rate of the external force on the structure. Final formula obtained in this research, reasonably predicts the instantaneous folding force of the first fold creation versus folding distance and folding angle and also predicts the instantaneous folding force instead of the average value. Finally, according to the calculated theoretical relation, instantaneous folding force of the first fold creation in a square column was sketched versus folding distance and was compared to the experimental results which showed a good correlation.

Keywords: Instantaneous force, Folding force, Honeycomb, Square column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
989 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4020
988 Force on a High Voltage Capacitor with Asymmetrical Electrodes

Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký

Abstract:

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This phenomenon is most likely to be caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. A method to measure this force has been devised and used. A formula describing the force has also been derived. After comparing the data gained through experiments with those acquired using the theoretical formula, a difference was found above a certain value of current. This paper also gives reasons for this difference.

Keywords: Capacitor with asymmetrical electrodes, Electricalfield, Mechanical force, Motion of ions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
987 Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine

Authors: W. R. Li, J. K. Xia, R. Q. Peng, Z. Y. Guo, L. Jiang

Abstract:

According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine.

Keywords: Transverse flux PM linear machine, flux distribution, axial end flux leakage, detent force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
986 Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance

Authors: Wang Zhan-Xi, Zhang Yi-Ming, Chen Hang, Wang Gang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. The use of robot polishing instead of manual polishing can effectively avoid these problems. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model show that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
985 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka

Abstract:

Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Keywords: Ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
984 New Approach in Diagnostics Method for Milling Process using Envelope Analysis

Authors: C. Bisu, M. Zapciu, A. Gérard

Abstract:

This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.

Keywords: diagnostics, envelope, milling, vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
983 Vibration Base Identification of Impact Force Using Genetic Algorithm

Authors: R. Hashemi, M.H.Kargarnovin

Abstract:

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
982 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko

Abstract:

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
981 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
980 A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach

Authors: Osama A. Marzouk

Abstract:

We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.

Keywords: reduced-order model, wake oscillator, nonlinear, ODEsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
979 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
978 Experimental Determination of Large Strain Localization in Cut Steel Chips

Authors: A. Simoneau

Abstract:

Metal cutting is a severe plastic deformation process involving large strains, high strain rates, and high temperatures. Conventional analysis of the chip formation process is based on bulk material deformation disregarding the inhomogeneous nature of the material microstructure. A series of orthogonal cutting tests of AISI 1045 and 1144 steel were conducted which yielded similar process characteristics and chip formations. With similar shear angles and cut chip thicknesses, shear strains for both chips were found to range from 2.0 up to 2.8. The manganese-sulfide (MnS) precipitate in the 1144 steel has a very distinct and uniform shape which allows for comparison before and after chip formation. From close observations of MnS precipitates in the cut chips it is shown that the conventional approach underestimates plastic strains in metal cutting. Experimental findings revealed local shear strains around a value of 6. These findings and their implications are presented and discussed.

Keywords: Machining, metal cutting, microstructure, plastic strains, local strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
977 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
976 Analytical Model Prediction: Micro-Cutting Tool Forces with the Effect of Friction on Machining Titanium Alloy (Ti-6Al-4V)

Authors: Mohd Shahrom Ismail, B.T. Hang Tuah Baharudin, K.K.B. Hon

Abstract:

In this paper, a methodology of a model based on predicting the tool forces oblique machining are introduced by adopting the orthogonal technique. The applied analytical calculation is mostly based on Devries model and some parts of the methodology are employed from Amareggo-Brown model. Model validation is performed by comparing experimental data with the prediction results on machining titanium alloy (Ti-6Al-4V) based on micro-cutting tool perspective. Good agreements with the experiments are observed. A detailed friction form that affected the tool forces also been examined with reasonable results obtained.

Keywords: dynamics machining, micro cutting tool, Tool forces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
975 Internal Force State Recognition of Jiujiang Bridge Based on Cable Force-displacement Relationship

Authors: Weifeng Wang, Guoqing Huang, Xianwei Zeng

Abstract:

The nearly 21-year-old Jiujiang Bridge, which is suffering from uneven line shape, constant great downwarping of the main beam and cracking of the box girder, needs reinforcement and cable adjustment. It has undergone cable adjustment for twice with incomplete data. Therefore, the initial internal force state of the Jiujiang Bridge is identified as the key for the cable adjustment project. Based on parameter identification by means of static force test data, this paper suggests determining the initial internal force state of the cable-stayed bridge according to the cable force-displacement relationship parameter identification method. That is, upon measuring the displacement and the change in cable forces for twice, one can identify the parameters concerned by means of optimization. This method is applied to the cable adjustment, replacement and reinforcement project for the Jiujiang Bridge as a guidance for the cable adjustment and reinforcement project of the bridge.

Keywords: Cable-stayed bridge, cable force-displacement, parameter identification, internal force state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543