
Abstract— This paper presents the identification of the impact 
force acting on a simply supported beam. The force identification is 
an inverse problem in which the measured response of the structure is 
used to determine the applied force. The identification problem is 
formulated as an optimization problem and the genetic algorithm is 
utilized to solve the optimization problem. The objective function is 
calculated on the difference between analytical and measured 
responses and the decision variables are the location and magnitude 
of the applied force. The results from simulation show the 
effectiveness of the approach and its robustness vs. the measurement 
noise and sensor location.

Keywords— Genetic Algorithm, Inverse problem, Optimization, 
Vibration.

I. INTRODUCTION

N important type of inverse problems in structural 
mechanics is force determination from measured 
response of the structure to applied force. Indeed in many 

practical applications it is difficult and some times impossible 
to directly measure the dynamic force that are acting on a 
vibrating structure, hence it could be beneficial to compute the 
time history and location of applied loads indirectly, using 
structural response measurement together with a dynamic 
model of structure. In the field of engineering structures a 
number of force identification techniques have been already 
developed by various investigators.  

Stevens has given an excellent survey of the literature on 
the force identification [1]. Also Chan et al. [2,3] and Zhu and 
Law [4] have presented a theoretical background of various 
moving force identification methods. An inverse weighted 
pseudo algorithm was presented by Parloo et al. [5,6] to 
estimate the forces that are acting on a structure starting from 
the measured response spectra. In this method force 
identification requires the inversion of the complete frequency 
response of the complete frequency response functions (FRF) 
matrices. Wang et al. [7,8] and Thite and Thompson [9] 
developed a prediction algorithm for unknown impact and 
harmonic forces. These models could estimate the force 
amplitude and its location simultaneously, but it is time-
consuming and sensitive to location of measurement. Zhu and 
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Lu [10] presented a time domain method to identify both 
concentrated and distributed loads on beam and plate 
structures.
Flores et al. [11] presented an optimization-based inverse 
procedure for the determination of external loads applied to a 
given mechanical structure, by using information concerning 
the dynamic behavior of the system and its corresponding 
finite element model. The influence of the stress-stiffening 
effect on the dynamic characteristics of structural systems was 
used to establish a relation between the dynamic responses 
and the applied external forces. The identification procedure 
was illustrated by means of numerical simulations and 
experimental tests, in which a heuristic technique known as 
Life Cycle model was used. 
Obata and Miyamori [12] investigated the dynamic response 
characteristics of pedestrian bridges and to develop a human 
walking force model to assist in the development and design 
of pedestrian bridges. Human walking force parameters were 
identified by a genetic algorithm (GA) from experimental 
forced vibration data. The results of the dynamic response 
obtained by the GA were in agreement with the experimental 
results. Therefore, they concluded that the GA system is 
useful in the identification of pedestrian walking forces, and 
from the experimental and calculated results, it was 
considered that the walking force model identified by the GA 
is substantially accurate. 

In this paper, the identification of impact force acting on a 
simply supported beam is addressed. It is assumed that the 
acceleration response of the structure to impact force is 
known, and the location and magnitude of the unknown force 
are sought for. The analytical acceleration response of the 
beam is derived in time and frequency domains. The problem 
is then formulated as an optimization problem, in which the 
objective function is considered as the location and magnitude 
of the impact force. The genetic algorithm is then adopted to 
solve this optimization problem. Simulation studies are 
conducted to assess the proposed approach and the effect of 
measurement noise and sensor location is also investigated.

II. THEORETICAL BACKGROUND

Consider a simply supported beam with a span length L,
constant flexural stiffness EI, constant mass per unit length 
and viscous damping C. The effect of shear deformation and 
rotary inertia are not taken into account (Euler-Bernoulli 
beam). As shown in Fig. 1, if the ideal impact force is applied 
at jxx , the equation of motion can be expressed as [1]: 
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where ),( txv  is the beam deflection at point x and time t and 
)(t  is the Dirac delta function. Based on the modal 

superposition, if the nth mode shape function of the beam is 
)/sin()( Lxnxn , the solution of equation (1) can be 

expressed as: 
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where n is the mode number and )(tqn  is the nth modal 
displacement. After substituting equation (2) into equation (1) 
and integrating the resultant equation with respect to x,
between 0 and L, then using the boundary conditions and the 
properties of Dirac delta function, the equation of motion in 
terms of the modal displacement )(tqn  can be expressed as: 
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are the nth modal frequency, the modal damping and the modal  
force, respectively. If the impact force is known, equation (3) 
can be solved for zero initial conditions to yield modal 
displacement as: 

where 21 nndK
. The solution of equation (4) for 

)(tqn  can be derived as:     
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By substituting equation (5) in equation (2), the dynamic 
deflection of the beam at point ixx , subjected to the impact 
force acting at jxx , can be obtained as:  

1
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By twice differentiating the above equation with respect to 
time, the acceleration response of the beam can be derived as: 
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Performing the Fourier transform on equation (7), the 
acceleration of beam can be obtained in frequency domain as: 

2
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III. FORMULATION OF FORCE IDENTIFICATION AS AN 
OPTIMIZATION PROBLEM

The problem of force identification can be regarded as an 
inverse problem, and inverse problem solving methods should 
be more efficient to such a problem.  

The basic idea of inverse problem solving is to determine 
the system inputs if the system outputs are known. On the 
other hand, in the direct problem the aim is just to seek or 
predict the system outputs from the given inputs. The 
successful resolution of direct problems consists of building a 
simulated system able to accurately predict the experimental 
outputs from the same experimental inputs. Such simulation is 
successful if the error between experimental outputs and 
numerical results is acceptably small. 

The general idea of the inverse problem solving can be 
depicted as following. First step is doing numerical simulation 
for the considered system. Then, use an optimization method 
to minimize the difference between the results of the 
numerical simulation and the actual outputs of the process. 

In the case of force identification problem, the direct 
problem is to obtain the dynamic response of the structure 
given the exact location and magnitude of the force. However, 
in the inverse problem, it is assumed that the dynamic 
response of the structure to the force is known and the 
location and magnitude of the force are sought for.  

Consider the proportionally damped simply supported beam 
subject to an unknown impact force at jxx  as shown in 
Figure 1. The system modal parameters (natural frequencies 
and mode shapes) are assumed to be known from modal 
analysis. The beam acceleration response at ixx  to the 
impact force can be measured by the accelerometer and 
denoted as )(ˆ tai . This response is consistent with the 
theoretically estimated acceleration response for a specific 
force location and magnitude, as shown in equation (7) and 
denoted as )(tai . So, the problem is to update the parameters 
of the theoretical model such that the difference between the 
theoretical and measured responses is minimized. This 
parameter updating problem can be formulated as an 
optimization problem as follows: 

tN

r
ririt tataJ

1
)(ˆ)()(Minimize (9)

wherein  is a solution to the problem, which is a vector 
containing the decision variables,  is the solution space 
defining the lower and upper bounds of the decision variables, 
and tN  is the considered number of time points. 
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Figure 1 Impact force on a simple supported beam. 

The optimization problem can also be formulated in 
frequency domain as: 

N

r
riri AAJ

1
)(ˆ)()(Minimize (10)

in which, )(iA  and )(ˆ
iA  are the theoretical and 

experimental frequency response of the beam, respectively, 
and N  is the considered number of frequency points. 

An important characteristic of this optimization problem is 
that the objective function has a large number of local 
optimums; therefore, gradient-based optimization methods 
may not converge to a global solution. In this case, gradient-
free optimization algorithms, such as Genetic Algorithm, can 
be used. 

A. Implementation of genetic algorithm
The Genetic Algorithm (GA) primarily formulated by 

Holland [13], is a probabilistic global search and optimization 
method that mimics the metaphor of natural biological 
evolution. GA operates on a population of individuals 
(potential solutions), each of which is an encoded string 
(chromosome), containing the decision variables (genes).  

The structure of a GA is composed by an iterative 
procedure through the following five main steps: 

Creating an initial population (G0).
Evaluation of the performance of each individual or 
chromosome (ck) of the population, by means of a 
fitness function to be maximized. 
Selection of individuals for reproduction of a new 
population. 
Application of genetic operators: Crossover and 
Mutation. 
Iteration of steps 2 to 4 until a termination criterion is 
fulfilled. 

B. Problem encoding and initialization 
The definition and the number of the decision variables are 

critical for the optimization process. All variables are encoded 
into a chromosome. Traditionally, GA uses binary strings as 
chromosome representation. In our problem, the candidate 
solution is the location and magnitude of the impact force. The 
location of the force is determined by the associated element 
number (j), which is a discrete variable and the magnitude of 

the force is represented by P. These variables are coded in a 
chromosome using a binary coding scheme as: 

),( Pj  (11)
To start the algorithm, an initial population of individuals 

(chromosomes) is defined. We configure the GA, so that it 
creates a fixed number of initial individuals at random from 
the whole solution space. An important parameter in 
initialization is the population size. In general, the population 
size affects both the ultimate performance and the efficiency 
of GA.

C. Fitness function 
To apply GA, a fitness function is required in order to 

evaluate the status of each solution and improve the solution. 
The fitness value is associated with each individual, 
expressing the performance of the related solution with 
respect to a fixed objective function to be minimized. The 
fitness function is defined as: 

)(
)(

2

1

xJb
b

xF (12)

where F is the fitness value and  b1 and b2 are some constants 
which are used to prevent division by zero and to make the 
fitness value to be in a wide range. If we plot the fitness 
values with respect to all possible force locations and 
magnitudes, a surface will be obtained. For instance, Figure 2 
shows the fitness function for a sample case, in which a 50 N 
force is acting on the 20th element of the simply supported 
beam of Figure 1, and the accelerometer is placed on the 10th 
element. As it is clear from this figure, the fitness function has 
a lot of local maxima, implying the need to use a gradient-free 
optimization algorithm. 
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Figure 2 Fitness function for a sample case

D. Genetic operators 
Following the evaluation of the fitness of all chromosomes 

in the population, the genetic operators are applied to produce 
a new population. During this process a number of genetic 
operators are used. The most important genetic operators are 
selection, crossover, and mutation which are briefly described 
here.

Selection is the mechanism for selecting the individuals with 
high fitness over low fitted ones to produce the new 
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Initialize Gt (t = 0)

Start

Termination 
criterion fulfilled? 

End 

Evaluate Gt

Crossover

Mutation

Selection

Replace Gt by Gt+1

t = t + 1

Yes

No

individuals for the next population. The selection function 
adopted here is the roulette wheel method in which the 
probability to choose a certain individual is proportional to its 
fitness, as follows [13]: 

)(
)(

selectedisProb
k

i
i cF

cFc (13)

Crossover is the method of merging the genetic information of 
two individuals (parents) to produce the new individuals 
(children). In the simplest case, this process is realized by 
cutting two chromosomes at a randomly chosen position, with 
a probability of pc and swapping the two tales, as is visualized 
below [14]:  

11110
10010

101
100

10010
11110

101
100

ChildrenParents

Crossover

The parameter pc is called the crossover rate and controls the 
rate at which solutions are subjected to crossover. As pc
increases, however, solution can be disputed faster than 
selection can exploit them. Typical values of pc are in the 
range of 0.5–1.0. 
Mutation is a probabilistic random deformation of the genetic 
information for an individual. The positive effect of mutation 
is the preservation of genetic diversity. This process can be 
handled by altering each bit randomly with a small 
probability, pm, as depicted below [14]: 
For parameter pm, which is called mutation rate, large values 
will transform the GA into a purely random search algorithm. 
However, too small values will cause the premature 
convergence of GA to suboptimal solutions. Typically, pm is 
chosen in the range of 0.005–0.1[14]. 

1001001110011110

bitmutated

Mutation

The process of reproduction continues until a termination 
criterion is fulfilled. In this work, the termination criterion is 
the maximum number of generations; that is, the reproduction 
continues until the number of generations reaches to a 
specified maximum limit. Figure 3 shows the flowchart of the 
optimization process via GA. 

.

IV. SIMULATION AND RESULTS

To evaluate the performance of the proposed GA-based 
force identification method, we consider the simply supported 
steel beam, as shown in Figure 1. The material properties and 
dimensions of the beam are summarized in Table 1. 

The step size and range of variations for each decision 
variable are illustrated in Table 2. The beam is equally divided 
into 64 elements and the magnitude of the force is assumed 
not to exceed 127 N. Therefore, the solution space contains 
64 128 points and the chromosome is to be formed by a 15- 
bit binary string representing  with 7-bit resolution for j and
8-bit for P.

Figure 3 Flow chart of operation of GA. 

As discussed before, there are some important parameters 
for GA. In this work, these parameters are determined through 
a series of experiments and algorithm performance 
comparison, and are listed in Table 3. From this table, the total 
number of potential solutions that are evaluated for a specific 
case is 30 30 points from the whole solution space which 
contains 64 128 points; that is, the total number of function 
evaluations is about 10% of that of a direct search approach. 
This means that the proposed approach is computationally 
efficient.

Table 1 
 Material properties and dimensions of the beam  

Parameter Value 
Modulus of elasticity (E) 207 109 Pa
Density 7870 kg/m3

Beam length 0.64 m
Beam width 0.04 m
Beam height 0.005 m

Table 2 
 Step size and range of variations for decision variables 

Variable Lower bound Upper bound Step size 
Location: j 1 64 1 
Magnitude: P
(N) 0 127 1

The first 6 modes are used here to calculate the theoretical 
acceleration response, while the first 20 modes are adopted to 
generate the experimentally measured acceleration response. 
The sampling frequency is 512Hz, the sensor location is 
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20i , and it is assumed (in this stage) that there is no noise 
in the measured data.  

Table 3 
 Parameters of GA  

Parameter Value 
Population size 30 
Number of generations 30 
Crossover rate: pc 0.8 
Mutation rate: pm 0.09 

As mentioned before, the initial population is randomly 
selected from the whole solution space. In order to investigate 
the effect of the initial population, a particular case of impact 
force is considered in which 25j  and NP 15 , and GA is 
run five times with five different random initial population. 
The fitness curves, which are the changes of the best fitness 
values during the optimization, for the five runs are depicted 
in Figure 4. Furthermore, the changes in the value of decision 
variables (location and magnitude of the force) during the 
optimization process are shown in Figures 5 and 6. It is clear 
from these figures that the effect of the initial population is 
trivial and there is only one incorrect identification, in which 
the location is correctly identified and the incorrect magnitude 
is very close to the actual value. 

Here, we consider five different cases of impact force 
whose locations and magnitudes are randomly selected from 
the whole solution space, and apply the proposed method to 
determine the location and magnitude of the force. The 
detailed information of these five cases is summarized in 
Table 4. Figure 7 shows the fitness curves for these five cases. 
Furthermore, the changes in the value of decision variables 
during the optimization process are depicted in Figures 8 and 
9.
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Figure 4 Trace of fitness value for five runs with different 
initialization

Table 4 
 Three different cases of damage 

 Location: j Magnitude: P (N)
Case 1 9 117 
Case 2 20 47 
Case 3 32 39 
Case 4 46 97 
Case 5 58 18 

A. The effect of measurement noise: 
In the force identification problems, the identifiablity of the 
force highly depends on the accuracy of measured data. The 
force can be identified by the dynamic response of the 
structure. However, the response is sensitive to the 
measurement of the noise, and when measured data are 
corrupted with random noise, the force is not accurately 
identifiable by measured data.  
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Figure 5 Trace of first decision variable for five runs 
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Figure 6 Trace of second decision variable for five runs 
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In this work, in order to investigate the effect of measured 
noise, zero mean white noise is added to the measured 
acceleration response, as follows: 

where s is a random number between -1 and 1 from a normal 
distribution and  is the noise level in the data. The results 
for two different levels of noise are summarized in Table 5. 
As it is seen from this table, the robustness of the approach to 
measured noise is good. 

Table 5
Three different cases of damage 

B. The effect of sensor location: 
Another factor that affects the performance of the force 
identification algorithms is the location of sensors for 
measurement. The measured data may not be adequate for the 
force identification because certain measured modes may be 
less sensitive to the force. The results for different sensor 
locations are depicted in Figures 10-12. Close examination of 
these figures reveals that the proposed method is not sensitive 
to the sensor location. 
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Figure 7 Trace of fitness for five study cases
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Figure 8 Trace of first decision variable for five study cases 
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Figure 9 Trace of second decision variable for five study cases
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Figure 10 Trace of fitness for different sensor locations
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Figure 11 Trace of first decision variable for different 
sensor locations
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Figure 12 Trace of second decision variable for different 
sensor locations 

V. CONCLUSION

  The identification of impact force acting on a simply 
supported beam is addressed. The problem is formulated as an 
optimization problem and GA method is used to solve it. The 
proposed approach is applicable both in time and frequency 
domains. The simulation results show that the approach is 
effective and the sensitivity of the approach to the randomly 
selected initial population is low. The effect of measurement 
noise and sensor location is also investigated and the results 
reveal that the proposed method is adequately robust to the 
measured noise and is not sensitive to the location of the 
sensor.
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