Search results for: finite recursive representations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1722

Search results for: finite recursive representations

882 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Ali Hamadi Dicko, Nicolas Tong-Yette, Benjamin Gilles, François Faure, Olivier Palombi

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: Hybrid, modeling, fast simulation, lumbar spine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
881 A Hyperbolic Characterization of Projective Klingenberg Planes

Authors: Basri Çelik

Abstract:

In this paper, the notion of Hyperbolic Klingenberg plane is introduced via a set of axioms like as Affine Klingenberg planes and Projective Klingenberg planes. Models of such planes are constructed by deleting a certain number m of equivalence classes of lines from a Projective Klingenberg plane. In the finite case, an upper bound for m is established and some combinatoric properties are investigated.

Keywords: Hyperbolic planes, Klingenberg planes, Projective planes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
880 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

Authors: Walenty Oniszczuk

Abstract:

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
879 Multimodal Reasoning in a Knowledge Engineering Framework for Product Support

Authors: Rossitza M. Setchi, Nikolaos Lagos

Abstract:

Problem solving has traditionally been one of the principal research areas for artificial intelligence. Yet, although artificial intelligence reasoning techniques have been employed in several product support systems, the benefit of integrating product support, knowledge engineering, and problem solving, is still unclear. This paper studies the synergy of these areas and proposes a knowledge engineering framework that integrates product support systems and artificial intelligence techniques. The framework includes four spaces; the data, problem, hypothesis, and solution ones. The data space incorporates the knowledge needed for structured reasoning to take place, the problem space contains representations of problems, and the hypothesis space utilizes a multimodal reasoning approach to produce appropriate solutions in the form of virtual documents. The solution space is used as the gateway between the system and the user. The proposed framework enables the development of product support systems in terms of smaller, more manageable steps while the combination of different reasoning techniques provides a way to overcome the lack of documentation resources.

Keywords: Knowledge engineering framework, product support, case-based reasoning, model-based reasoning, multimodal reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
878 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11 presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, - 52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental natural frequency, chromite composite floor system, finite element method, low and high frequency floors, comfortableness, resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
877 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies

Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox

Abstract:

A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.

Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2898
876 Propagation of a Generalized Beam in ABCD System

Authors: Halil Tanyer Eyyuboğu

Abstract:

For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.

Keywords: Optical communications, Hermite-Gaussian beams, ABCD system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
875 Blow up in Polynomial Differential Equations

Authors: Rudolf Csikja, Janos Toth

Abstract:

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
874 The Role of Contextual Ontologies in Enterprise Modeling

Authors: Ahmed Arara

Abstract:

Information sharing and exchange, rather than information processing, is what characterizes information technology in the 21st century. Ontologies, as shared common understanding, gain increasing attention, as they appear as the most promising solution to enable information sharing both at a semantic level and in a machine-processable way. Domain Ontology-based modeling has been exploited to provide shareability and information exchange among diversified, heterogeneous applications of enterprises. Contextual ontologies are “an explicit specification of contextual conceptualization". That is: ontology is characterized by concepts that have multiple representations and they may exist in several contexts. Hence, contextual ontologies are a set of concepts and relationships, which are seen from different perspectives. Contextualization is to allow for ontologies to be partitioned according to their contexts. The need for contextual ontologies in enterprise modeling has become crucial due to the nature of today's competitive market. Information resources in enterprise is distributed and diversified and is in need to be shared and communicated locally through the intranet and globally though the internet. This paper discusses the roles that ontologies play in an enterprise modeling, and how ontologies assist in building a conceptual model in order to provide communicative and interoperable information systems. The issue of enterprise modeling based on contextual domain ontology is also investigated, and a framework is proposed for an enterprise model that consists of various applications.

Keywords: Contextual ontologies, Enterprise model, domainontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
873 Modeling of Radiative Heat Transfer in 2D Complex Heat Recuperator of Biomass Pyrolysis Furnace: A Study of Baffles Shadow and Soot Volume Fraction Effects

Authors: Mohamed Ammar Abbassi, Kamel Guedri, Mohamed Naceur Borjini, Kamel Halouani, Belkacem Zeghmati

Abstract:

The radiative heat transfer problem is investigated numerically for 2D complex geometry biomass pyrolysis reactor composed of two pyrolysis chambers and a heat recuperator. The fumes are a mixture of carbon dioxide and water vapor charged with absorbing and scattering particles and soot. In order to increase gases residence time and heat transfer, the heat recuperator is provided with many inclined, vertical, horizontal, diffuse and grey baffles of finite thickness and has a complex geometry. The Finite Volume Method (FVM) is applied to study radiative heat transfer. The blocked-off region procedure is used to treat the geometrical irregularities. Eight cases are considered in order to demonstrate the effect of adding baffles on the walls of the heat recuperator and on the walls of the pyrolysis rooms then choose the best case giving the maximum heat flux transferred to the biomass in the pyrolysis chambers. Ray effect due to the presence of baffles is studied and demonstrated to have a crucial effect on radiative heat flux on the walls of the pyrolysis rooms. Shadow effect caused by the presence of the baffles is also studied. The non grey radiative heat transfer is studied for the real existent configuration. The Weighted Sum of The Grey Gases (WSGG) Model of Kim and Song is used as non grey model. The effect of soot volumetric fraction on the non grey radiative heat flux is investigated and discussed.

Keywords: Baffles, Blocked-off region procedure, FVM, Heat recuperation, Radiative heat transfer, Shadow effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
872 Another Approach of Similarity Solution in Reversed Stagnation-point Flow

Authors: Vai Kuong Sin, Chon Kit Chio

Abstract:

In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.

Keywords: reversed stagnation-point flow, similarity solutions, asymptotic solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
871 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
870 Modeling and Simulation of Delaminations in FML Using Step Pulsed Active Thermography

Authors: S. Sundaravalli, M. C. Majumder, G. K. Vijayaraghavan

Abstract:

The study focuses to investigate the thermal response of delaminations and develop mathematical models using numerical results to obtain the optimum heat requirement and time to identify delaminations in GLARE type of Fibre Metal Laminates (FML) in both reflection mode and through-transmission (TT) mode of step pulsed active thermography (SPAT) method in the type of nondestructive testing and evaluation (NDTE) technique. The influence of applied heat flux and time on various sizes and depth of delaminations in FML is analyzed to investigate the thermal response through numerical simulations. A finite element method (FEM) is applied to simulate SPAT through ANSYS software based on 3D transient heat transfer principle with the assumption of reflection mode and TT mode of observation individually.

The results conclude that the numerical approach based on SPAT in reflection mode is more suitable for analysing smaller size of near-surface delaminations located at the thermal stimulator side and TT mode is more suitable for analysing smaller size of deeper delaminations located far from thermal stimulator side or near thermal detector/Infrared camera side. The mathematical models provide the optimum q and T at the required MRTD to identify unidentified delamination 7 with 25015.0022W/m2 at 2.531sec and delamination 8 with 16663.3356 W/m2 at 1.37857sec in reflection mode. In TT mode, the delamination 1 with 34954W/m2 at 13.0399sec, delamination 2 with 20002.67W/m2 at 1.998sec and delamination 7 with 20010.87 W/m2 at 0.6171sec could be identified.

Keywords: Step pulsed active thermography (SPAT), NDTE, FML, Delaminations, Finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
869 Analysis of the Accuracy of Earth Movement with Drone Surveys

Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García

Abstract:

New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.

Keywords: Drone, earth movement control, global position system, surveying technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
868 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis

Authors: Azeemsha Thacham Poyil, Nasimudeen KM

Abstract:

This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.

Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
867 Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire

Authors: G. Sokhansefat, M. Delavar, M. Banedj-Schafii

Abstract:

Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.

Keywords: Multi-Agent system (MAS), Spatial Cognition, Wayfinding, Indoor Environment, Geospatial Information System (GIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
866 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
865 The Prostitute’s Body in Diasporic Space: Sexualized China and Chineseness in Yu Dafu’s Sinking and Yan Geling’s The Lost Daughter of Happiness

Authors: Haizhi Wu

Abstract:

Sexualization brings together the interdependent experiences of prostitution and diaspora, establishing a masculine structure where a female’s body mediates the hegemony and sexuality of men from different races. Between eroticism and homesickness, writers of the Chinese diaspora develop sensual approaches to reflect on the diasporic experience and sexual frustration. Noticeably, Yu Dafu in Sinking and Yan Geling in The Lost Daughter of Happiness both take an interest in sexual encounters between an immature teen client and an erotically powerful prostitute in Japan or America, both countries considered colonizers in Chinese history. Both are utilizing the metaphor of body-space interplay to hint at the out-of-text transnational interactions, two writers, however, present distinct understandings of their bond with history and memory of the semi-colonial, semi-feudal China. Examining prostitutes’ bodies in multi-layer diasporic spaces, the central analysis of this paper works on the sexual, colonial, and historical representations of this bodily symbol and the prostitution’s engagement in negotiating with diaspora and “Chineseness”.

Keywords: Chineseness, Diasporic spaces, Prostitutes’s bodies, Sexualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
864 Sensitivity Computations of Time Relaxation Model with an Application in Cavity Computation

Authors: Monika Neda, Elena Nikonova

Abstract:

We present a numerical study of the sensitivity of the so called time relaxation family of models of fluid motion with respect to the time relaxation parameter χ on the two dimensional cavity problem. The goal of the study is to compute and compare the sensitivity of the model using finite difference method (FFD) and sensitivity equation method (SEM).

Keywords: Sensitivity, time relaxation, deconvolution, Navier- Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
863 Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
862 Thermal Analysis of Toroidal Transformers Using Finite Element Method

Authors: Adrian T.

Abstract:

In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Temperature distribution, thermal analysis, toroidal transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570
861 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
860 The Comparison of Finite Difference Methods for Radiation Diffusion Equations

Authors: Ren Jian, Yang Shulin

Abstract:

In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.

Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
859 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.

Keywords: Beams, Composites, Constant Stress, Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4385
858 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime

Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract:

In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.

Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
857 A New Method to Solve a Non Linear Differential System

Authors: Seifedine Kadry

Abstract:

In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.

Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
856 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different from those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel, along with the associated edge stiffeners, subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in a parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, both the plate slenderness and the aspect ratio influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: Thin plate, transverse shear, tension field, finite element analysis, parametric study, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
855 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding

Authors: S. Shubha, B. N. Meera

Abstract:

Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.

Keywords: Electric Force, Interactive, Representation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
854 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
853 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract:

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801