WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10003104,
	  title     = {Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure},
	  author    = {K. S. Sivakumaran and  T. Thanga and  B. Halabieh},
	  country	= {},
	  institution	= {},
	  abstract     = {The end panels of a large rectangular industrial duct,
which experience significant internal pressures, also experience
considerable transverse shear due to transfer of gravity loads to the
supports. The current design practice of such thin plate panels for
shear load is based on methods used for the design of plate girder
webs. The structural arrangements, the loadings and the resulting
behavior associated with the industrial duct end panels are, however,
significantly different from those of the web of a plate girder. The
large aspect ratio of the end panels gives rise to multiple bands of
tension fields, whereas the plate girder web design is based on one
tension field. In addition to shear, the industrial end panels are
subjected to internal pressure which in turn produces significant
membrane action. This paper reports a study which was undertaken
to review the current industrial analysis and design methods and to
propose a comprehensive method of designing industrial duct end
panels for shear resistance. In this investigation, a nonlinear finite element model was
developed to simulate the behavior of industrial duct end panel, along
with the associated edge stiffeners, subjected to transverse shear and
internal pressures. The model considered the geometric imperfections
and constitutive relations for steels. Six scale independent
dimensionless parameters that govern the behavior of such end panel
were identified and were then used in a parametric study. It was
concluded that the plate slenderness dominates the shear strength of
stockier end panels, and whereas, both the plate slenderness and the
aspect ratio influence the shear strength of slender end panels. Based
on these studies, this paper proposes design aids for estimating the
shear strength of rectangular duct end panels.},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {9},
	  number    = {12},
	  year      = {2015},
	  pages     = {1556 - 1561},
	  ee        = {https://publications.waset.org/pdf/10003104},
	  url   	= {https://publications.waset.org/vol/108},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 108, 2015},
	}