Search results for: Fuel Cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1319

Search results for: Fuel Cell

479 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method

Authors: N. Dahbi, D-E. Arafah

Abstract:

The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.

Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
478 Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants

Authors: Naira Sahakyan, Margarit Petrosyan, Armen Trchounian

Abstract:

One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of Ajuga genevensis with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (Bacillus subtilis A1WT; B. mesentericus WDCM 1873; Staphylococcus aureus WDCM 5233; Staph. citreus WT) and gram-negative (Escherichia coli WKPM M-17; Salmonella typhimurium TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against E. coli corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of A. genevensis intact plant extract. A. genevensis intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of A. genevensis callus culture extracts. Obtained data indicate that callus culture of A. genevensis can be used as an alternative source of biologically active substances.

Keywords: Ajuga genevensis, antibacterial activity, antioxidant activity, callus cultures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
477 Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application

Authors: Abbas Teimouri, Leila Ghorbanian, Iren Dabirian

Abstract:

This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering.

Keywords: Electrospinning, nanofibers, silk fibroin, diopside, composite scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
476 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai

Abstract:

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Keywords: Gasified System, Identification, Response SurfaceMethod

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
475 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen

Abstract:

In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.

Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
474 Experimental Determination of the Critical Locus of the Acetone + Chloroform Binary System

Authors: Niramol Juntarachat, Romain Privat, Jean-Noël Jaubert

Abstract:

In this paper, vapour-liquid critical locus for the binary system acetone + chloroform was determined experimentally over the whole range of composition. The critical property measurements were carried out using a dynamic-synthetic apparatus, employed in the dynamic mode. The critical points are visually determined by observing the critical opalescence and the simultaneous disappearance and reappearance of the meniscus in the middle of a high-pressure view cell which withstands operations up to 673K and 20MPa. The experimental critical points measured in this work were compared to those available in literature.

Keywords: Experimental measurement, critical point, critical locus, negative azeotrope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
473 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel

Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal

Abstract:

The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.

Keywords: Biodiesel, combustion, gas oil, pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
472 Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

Authors: Navid Mehdizadeh Afroozi, Khodakhast Isapour, Mojtaba Hakimzadeh, Abdolmohammad Davodi

Abstract:

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Keywords: Economic Dispatch (ED), Ant Colony Optimization, Fuel Cost, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
471 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
470 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method

Authors: Dominik Böhm, Konrad Czerski

Abstract:

A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.

Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
469 Optimal Design and Intelligent Management of Hybrid Power System

Authors: Reza Sedaghati

Abstract:

Given the increasing energy demand in the world as well as limited fossil energy fuel resources, it is necessary to use renewable energy resources more than ever. Developing a hybrid energy system is suggested to overcome the intermittence of renewable energy resources such as sun and wind, in which the excess electrical energy can be converted and stored. While these resources store the energy, they can provide a more reliable system that is really suitable for off-grid applications. In hybrid systems, a methodology for optimal sizing of power generation systems components is of great importance in terms of economic aspects and efficiency. In this study, a hybrid energy system is designed to supply an off-grid sample load pattern with the aim of supplying necessary energy and minimizing the total production cost throughout the system life as well as increasing the reliability. For this purpose, the optimal size and the cost function of these resources is determined and minimized using evolutionary algorithms and system efficiency is studied with real-time load and meteorological information of Kazerun, a city in southern Iran under different conditions.

Keywords: Hybrid energy system, intelligent method, optimal size, minimal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
468 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup

Abstract:

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

Keywords: Biomass, Gasification, Hydrogen, iCON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
467 Development of High Performance Clarification System for FBR Dissolver Liquor

Authors: M.Takeuchi, T.Kitagaki, Y.Noguchi, T. Washiya

Abstract:

A high performance clarification system has been discussed for advanced aqueous reprocessing of FBR spent fuel. Dissolver residue gives the cause of troubles on the plant operation of reprocessing. In this study, the new clarification system based on the hybrid of centrifuge and filtration was proposed to get the high separation ability of the component of whole insoluble sludge. The clarification tests of simulated solid species were carried out to evaluate the clarification performance using small-scale test apparatus of centrifuge and filter unit. The density effect of solid species on the collection efficiency was mainly evaluated in the centrifugal clarification test. In the filtration test using ceramic filter with pore size of 0.2μm, on the other hand, permeability and filtration rate were evaluated in addition to the filtration efficiency. As results, it was evaluated that the collection efficiency of solid species on the new clarification system was estimated as nearly 100%. In conclusion, the high clarification performance of dissolver liquor can be achieved by the hybrid of the centrifuge and filtration system.

Keywords: Centrifuge, Clarification, FBR dissolver liquor, Filtration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
466 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Authors: Aman Patidar, Dipankar Sarkar, Manish Pal

Abstract:

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
465 Effect of Inlet Valve Variable Timing in the Spark Ignition Engine on Achieving Greener Transport

Authors: Osama H. Ghazal, Yousef S. Najjar, Kutaeba J. AL-Khishali

Abstract:

The current emission legislations and the large concern about the environment produced very numerous constraints on both governments and car manufacturers. Also the cost of energy increase means a reduction in fuel consumption must be met, without largely affecting the current engine production and performance. It is the intension to contribute towards the development and pursuing, among others on variable valve timing (VVT), for improving the engine performance. The investigation of the effect of (IVO) and (IVC) to optimize engine torque and volumetric efficiency for different engine speeds was considered. Power, BMEP and BSFC were calculated and presented to show the effect of varying inlet valve timing on them for all cases. A special program used to carry out the calculations. The analysis of the results shows that the reduction of 10% of (IVO) angle gave an improvement of around 1.3% in torque, BSFC, and volumetric efficiency, while a 10% decrease in (IVC) caused a 0.1% reduction in power, torque, and volumetric efficiency.

 

Keywords: Green transportation, inlet valve variable timing, performance, spark ignition engines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
464 CFD Investigation of the Effects of Re-Entrant Combustion Chamber Geometry in a HSDI Diesel Engine

Authors: Raouf Mobasheri, Zhijun Peng

Abstract:

A CFD simulation has applied to explore the effects of combustion chamber geometry on engine performance and pollutant emissions in a HSDI diesel engine. Three ITs (Injection Timing) at 2.65 CA BTDC, 0.65 CA BTDC and 1.35 CA ATDC, all with 30 crank angle pilot separations has firstly considered to identify the optimum IT for achieving the minimum amount of pollutant emissions. In order to investigate the effect of combustion chamber, thirteen different piston bowl configurations have been designed and analyzed. For all the studied cases, compression ratio, squish bowl volume and the amount of injected fuel were kept constant to assure that variation in the engine performance were only caused by geometric parameters. The results showed that by changing the geometric parameters on piston bowl, the amount of emission pollutants can be decreased while the other performance parameters of engine remain constant.

Keywords: HSDI Diesel Engine, Combustion Chamber Geometry, Pilot Injection, Injection Timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4186
463 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors

Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez

Abstract:

For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.

Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
462 Impact of the Transport on the Urban Heat Island

Authors: L. Haddad, Z. Aouachria

Abstract:

The development of transport systems has negative impacts on the environment although it has beneficial effects on society. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: 1. To understand the different mechanisms of interactions between these phenomena.2. To consider appropriate technical solutions to mitigate the effects of the heat island.

Keywords: Atmospheric pollution, impact on the health, urban transport, heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
461 Influence of Hydraulic Hysteresis on Effective Stress in Unsaturated Clay

Authors: Anuchit Uchaipichat

Abstract:

A comprehensive program of laboratory testing on a compacted kaolin in a modified triaxial cell was perform to investigate the influence of hydraulic hysteresis on effective stress in unsaturated soils. The test data are presented on a range of constant suction shear tests along wetting and drying paths. The values of effective stress parameter χ at different matric suction were determined using the test results. The effect of hydraulic hysteresis phenomenon on the effective stress was observed. The values of effective stress parameter χ obtained from the experiments were compared with those obtained from the expressions proposed in literature.

Keywords: Unsaturated soils, Hydraulic hysteresis, Effectivestress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
460 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: Incorporation of carbon, macrosegregation and microsegregation, solidification, uranium-molybdenum alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
459 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: 5G, IoT, wireless communications, antenna, solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
458 Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

Authors: M. Margarida Costa, Jorge Simão

Abstract:

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Keywords: Morphogenesis, branching structures, symmetrybreaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
457 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: Anila stove, biochar, soil conditioning materials, temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
456 Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China

Authors: Tao Zhao, Xianshuo Xu

Abstract:

Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.

Keywords: Public passenger transport, carbon emissions, countermeasures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
455 Assessing Efficiency Trends in the Indian Sugar Industry

Authors: S. P. Singh

Abstract:

This paper measures technical and scale efficiencies of 40 Indian sugar companies for the period from 2004-05 to 2013-14. The efficiencies are estimated through input-oriented DEA models using one output variable—value of output (VOP) and five input variables—capital cost (CA), employee cost (EMP), raw material (RW), energy & fuel (E&F) and other manufacturing expenses (OME). The sugar companies are classified into integrated and non-integrated categories to know which one achieves higher level of efficiency. Sources of inefficiency in the industry are identified through decomposing the overall technical efficiency (TE) into pure technical efficiency (PTE) and scale efficiency (SE). The paper also estimates input-reduction targets for relatively inefficient companies and suggests measures to improve their efficiency level. The findings reveal that the TE does not evince any trend rather it shows fluctuations across years, largely due to erratic and cyclical pattern of sugar production. Further, technical inefficiency in the industry seems to be driven more by the managerial inefficiency than the scale inefficiency, which implies that TE can be improved through better conversion of inputs into output.

Keywords: Sugar industry, companies, technical efficiency, data envelopment analysis, targets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
454 Low-complexity Integer Frequency Offset Synchronization for OFDMA System

Authors: Young-Jae Kim, Young-Hwan You

Abstract:

This paper presents a integer frequency offset (IFO) estimation scheme for the 3GPP long term evolution (LTE) downlink system. Firstly, the conventional joint detection method for IFO and sector cell index (CID) information is introduced. Secondly, an IFO estimation without explicit sector CID information is proposed, which can operate jointly with the proposed IFO estimation and reduce the time delay in comparison with the conventional joint method. Also, the proposed method is computationally efficient and has almost similar performance in comparison with the conventional method over the Pedestrian and Vehicular channel models.

Keywords: LTE, OFDMA, primary synchronization signal (PSS), IFO, CID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
453 Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

Authors: V. Zamora, Z. Zhang, A. Meldrum

Abstract:

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Keywords: Oils, optical resonators, sensing applications, whispering gallery modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
452 A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System

Authors: Ji-Hye Kim, Sung-Gaun Kim

Abstract:

Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESim

Keywords: Power steering system, Electro-Hydraulic power steering (EHPS) system, Modeling of EHPS system, Analysis modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
451 Effect of Field Dielectric Material on Performance of InGaAs Power LDMOSFET

Authors: Yashvir Singh, Swati Chamoli

Abstract:

In this paper, a power laterally-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) on In0.53Ga0.47As is presented. The device utilizes a thicker field-oxide with low dielectric constant under the field-plate in order to achieve possible reduction in device capacitances and reduced-surface-field effect. Using 2D numerical simulations, performance of the proposed device is analyzed and compared with that of the conventional LDMOSFET. The proposed structure provides 50% increase in the breakdown voltage, 21% increase in transit frequency, and 72% improvement in figure-of-merit over the conventional device for same cell pitch.

Keywords: InGaAs, dielectric, lateral, power MOSFET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
450 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is  incorporated in several major chemical processes including the  production of ammonia, methanol, hydrogen and ox alcohols. Due to  the strongly endothermic nature of the process, a large amount of heat  is supplied by fuel burning (commonly natural gas) in the furnace  chamber. Reaction conversions, tube catalyst life, energy  consumption and CO2 emission represent the principal factors  affecting the performance of this unit and are directly influenced by  the high operating temperatures and pressures.  This study presents a simulation of the performance of the  reforming of methane in a primary reformer, through a developed  empirical relation which enables to investigate the effects of  operating parameters such as the pressure, temperature, steam to  carbon ratio on the production of hydrogen, as well as the fraction of  non converted methane.  It appears from this analysis that the exit temperature Te, the  operating pressure as well the steam to carbon ratio has an important  effect on the reforming of methane.

 

Keywords: Reforming, methane, performance, hydrogen, parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471