Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Khodakhast Isapour

3 Using Artificial Neural Network Algorithm for Voltage Stability Improvement

Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi

Abstract:

This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.

Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
2 Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

Authors: Navid Mehdizadeh Afroozi, Khodakhast Isapour, Mojtaba Hakimzadeh, Abdolmohammad Davodi

Abstract:

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Keywords: Economic Dispatch (ED), Ant Colony Optimization, Fuel Cost, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
1 Stability Improvement of AC System by Controllability of the HVDC

Authors: Omid Borazjani, Alireza Rajabi, Mojtaba Saeedimoghadam, Khodakhast Isapour

Abstract:

High Voltage Direct Current (HVDC) power transmission is employed to move large amounts of electric power. There are several possibilities to enhance the transient stability in a power system. One adequate option is by using the high controllability of the HVDC if HVDC is available in the system. This paper presents a control technique for HVDC to enhance the transient stability. The strategy controls the power through the HVDC to help make the system more transient stable during disturbances. Loss of synchronism is prevented by quickly producing sufficient decelerating energy to counteract accelerating energy gained during. In this study, the power flow in the HVDC link is modulated with the addition of an auxiliary signal to the current reference of the rectifier firing angle controller. This modulation control signal is derived from speed deviation signal of the generator utilizing a PD controller; the utilization of a PD controller is suitable because it has the property of fast response. The effectiveness of the proposed controller is demonstrated with a SMIB test system.

Keywords: HVDC, SMIB, Stability, Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048