
 

 

  
Abstract—For a quick and accurate calculation of spatial neutron 

distribution in nuclear power reactors 3D nodal codes are usually 
used aiming at solving the neutron diffusion equation for a given 
reactor core geometry and material composition. These codes use a 
second order polynomial to represent the transverse leakage term. In 
this work, a nodal method based on the well known nodal expansion 
method (NEM), developed at COPPE, making use of this polynomial 
expansion was modified to treat the transverse leakage term for the 
external surfaces of peripheral reflector nodes. 

The proposed method was implemented into a computational 
system which, besides solving the diffusion equation, also solves the 
burnup equations governing the gradual changes in material 
compositions of the core due to fuel depletion. Results confirm the 
effectiveness of this modified treatment of peripheral nodes for 
practical purposes in PWR reactors. 
 

Keywords—Transverse leakage, nodal expansion method, power 
density, PWR reactors 

I. INTRODUCTION 

HE neutron distribution has to be frequently calculated in 
PWR reactors. This calculation is validated with measured 

values of reactor parameters. Even the neutron population 
varies along the reactor operation period depending on time 
variation of the nuclide distribution, which in turn varies with 
the spatial distribution of the depletion rate, one is fully 
justified to use a quasi-static approximation [1], in which the 
reactor cycle is divided into certain time intervals, during 
which the neutron fluxes are held constant. Therefore, in this 
case, the steady state diffusion equation and the depletion 
equations are solved, for each of the defined time intervals for 
the reactor operation period.There are a lot of methods to 
solve the neutron diffusion equation for a given reactor core, 
but determining factors that affect the quality of a system for 
calculating the neutronic parameters of the reactor core are the 
accuracy and speed with which the operational performance of 
the reactor is predicted. For power reactors, the most popular 
method is the nodal expansion method (NEM) [2]. An 
example of application of this method is the CNFR code 
(Portuguese acronym for National Reactor Physics Code) [3] 
that consists of three main modules, which generate nuclear 
data for fuel elements, 3D nuclear power distributions and 
characteristic parameter calculations of the nuclear reactor. 
The majority of nodal diffusion codes employ the diffusion 
equation integrated in a transverse area for given direction. 
From this integration, the transverse leakage is obtained.  
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These codes use a second order polynomial to represent the 

transverse leakage term. CNFR code has also made use of this 
polynomial expansion for all nodes so far. But there was a 
motivation to better represent the transverse leakage for the 
external surface of nodes in the reflector periphery, so that this 
paper presents a modified treatment of the transverse leakage 
for these nodes. In section 2, a brief comment on the nodal 
expansion method (NEM) is presented. Section 3 presents the 
modified procedure. Section 4 shows results obtained with this 
modification. Conclusions are presented in section 5. 
 

II. NODAL EXPANSION METHOD 

The reactor core is divided, in space, into contiguous 
parallelepipeds called nodes. Since NEM requires that the 
nodes be homogeneous, special models are adopted to deal 
with cross-sections that are no longer uniform inside the node, 
due to burnup and control rod motion [4]. With these special 
models, nodes remain homogeneous and core nodalization, 
which was previously established, is maintained. 

The NEM uses partial interface currents and has as its 
starting point the neutron continuity equation and Fick's Law. 
The nodal balance equation, from which one obtains average 

nodal fluxes )t(n
g ℓφ  for each time

ℓ
t , results from integration 

of the continuity equation in the volume n
z

n
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n
xn aaaV =  of a 

node n, shown in Figure 1, and subsequent division of the 
integrated equation by this volume, i.e. 
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where the cross sections involving capture and fission, which 

because of the burnup gradient [5] vary spatially within the 

node, are given by: 
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Fig. 1 Node n dimensions 
 

A. Nodal Coupling Equations   

The nodal coupling equations are obtained from Fick´s law, 
integrating these equations in the area transverse to direction u, 
and subsequent division of the integrated equations by this 
area, i.e. 
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ψ  is obtained by integrating the diffusion equation in 

the transverse area to direction u. The transverse integrated 
diffusion equation, mentioned above is written as: 
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Where the transverse leakage is defined as 
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and the cross section difference term is defined as 
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. 
There have been some variants of NEM [2], since its 

appearance to solve eq. (8). One of them is the analytical 
NEM, e.g., the nodal integration method (NIM) [6]. This 
method solves the transverse integrated equations analytically, 
approximating only the transverse leakage and the cross 
section difference term. Other variant is the semi-analytical 
NEM [7], which makes use of polynomial expansions for the 
transverse leakage, fission source, scattering and the cross 
section difference term, thus uncoupling the energy groups. 

According to the original NEM, )t,u(n
gu ℓψ  are calculated 

using a fourth order polynomial expansion as follows: 
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where )a/u(h n
uk  are basis functions of NEM [2]. 

 
III.  TREATMENT OF TRANSVERSE LEAKAGE 

All the NEM based nodal codes, including CNFR, use 
second order polynomial expansions to 

approximate )t,u(Ln
gu ℓ

, for every node in the reactor (active 

core and reflector), in the form: 
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In this work, we have used for all nodal surfaces in the core 

and reflector, except by those reflector node surfaces at the 
external surface of the reactor, the following expression 

for )t(Lm
gur ℓ

: 
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where m  is the node adjacent to node n  and 
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But in those reflector node surfaces at the external surface of 
the core, the following expression was used 
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One important difference among CNFR and other NEM 

based codes is the number of inner iterations per outer 
iterations, as reported in [3]. In CNFR, for each axial layer 
into which the core has been divided, two radial nodal mesh 
sweeps are done, the first one sweeping the columns for each 
row, while the other sweeps the rows for each column. Note 
that only these two mesh sweeps are done for each outer 
iteration. In this way, computing time required to complete one 
outer iteration is greatly reduced. For the first sweep, one 
searches the neighboring nodes to each reflector or fuel node 
being swept, in order to update incoming currents and/or 
impose the boundary or symmetry conditions. Although results 
were very good inside the core, there was a motivation to 
improve the results at reflector nodes. This resulted in the 
development of this modified treatment of the transverse 
leakage terms for the external surfaces of reflectors at the core 
periphery. We point out that in [3], eq. (15) was always used, 
while in this work eq. (17) was used at those mentioned 
reflector surfaces. 

IV.  RESULTS 

To test the proposed procedure, the IAEA 3D benchmark 
problem [8] was used. The calculated effective multiplication 
factor was 1.029006, with a relative deviation of 0.0003 %. 
The normalized assembly power and relative percent 
deviations are shown in figure 2 below. 
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Fig. 1 Normalized assembly power 

 
It can be seen, from these results, that the modified leakage 

treatment was able to calculate the assembly power 
distribution with a maximum relative deviation of less than 
1%, as indicated (in bold) in figure 2. Other test cases were 
calculated with this modified external surface of reflector 
nodes, always with accuracies similar to the IAEA test case, 
including burnup dependent problems [9]. Results at reflector 
at periphery are better than with the ones obtained using only 
Eq. (15) throughout the whole core. 
 

V. CONCLUSIONS  
This paper presents a modified procedure for treatment of 

reflector surfaces at core periphery with respect to the 
transverse leakage terms. The proposed method was 
implemented into a computational system which, besides 
solving the diffusion equation, also solves the burnup 
equations governing the gradual changes in material 
compositions of the core due to fuel depletion. Results 
presented refer to the IAEA benchmark 3D problem and 
confirm the effectiveness of the method for practical purposes. 
For instance, the calculated effective multiplication factor was 
1.029006, with a relative deviation of 0.0003 %.  Results at 
reflector at periphery are better than with the ones obtained 
using only Eq. (14) throughout the whole core. Calculations 
with burnup dependent problems, not presented here, were 
also done and results presented good accuracy. 
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