Search results for: Optimal condition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2946

Search results for: Optimal condition

2166 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application

Authors: Lochan Basyal

Abstract:

Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.

Keywords: Control circuit, email, global automation, internet of things, Raspberry Pi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
2165 Stability of New Macromycetes Phytases under Room, Cooling and Freezing Temperatures of Storage

Authors: Michele R. Spier, Denise N. X. Salmon, Renato L. Binati, Luíza C. Piva, Adriane B.P. Medeiros, Carlos R. Soccol

Abstract:

Phytases are enzymes used as an important component in monogastric animals feeds in order to improve phosphorous availability, since it is not readily assimilated by these animals in the form of the phytate presented in plants and grains. As these enzymes are used in industrial activities, they must retain its catalytic activities during a certain storage period. This study presents information about the stability of 4 different phytases, produced by four macromycetes fungi through solid-state fermentation (SSF). There is a lack of data in literature concerning phytase from macromycetes shelf-life in storage conditions at room, cooling and freezing temperatures. The 4 phytases from macromycetes still had enzymatic activities around 100 days of storage at room temperature. At cooling temperature in 146 days of studies, the phytase from G. stipitatum was the most stable with 44% of the initial activity, in U.gds (units per gram of dried fermented substrate). The freezing temperature was the best condition storage for phytases from G. stipitatum and T. versicolor. Each condition provided a study for each mushroom phytase, totalizing 12 studies. The phytases showed to be stable for a long period without the addition of additives.

Keywords: macromycetes, phytase, solid-state fermentation, wheat bran, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
2164 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: Shelled walnut, MAP, quality, storage temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
2163 Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

Authors: Aleksandra Mišan, Bojana Šarić, Nataša Nedeljković, Mladenka Pestorić, Pavle Jovanov, Milica Pojić, Jelena Tomić, Bojana Filipčev, Miroslav Hadnađev, Anamarija Mandić

Abstract:

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

Keywords: Baking process, blueberry pomace, gluten-free cookies, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2162 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

Background: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, for which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. Objective: This article tried to optimize the layout of a troops’ cafeteria and to improve the overall efficiency of the dining process. Methods: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. Results: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interferences reduced as well, which verified corresponding simulation results. Conclusion: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: Troops’ cafeteria, layout optimization, dining efficiency, AnyLogic simulation, field experiment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
2161 Effects of Drought Stress on Qualitative and Quantitative Traits of Mungbean

Authors: Amir Mirzaei, Rahim Naseri, Parvaneh Vafa, Meysam Moradi

Abstract:

In order to investigate the effect of drought stress and row spacing on grain yield and associated traits of Mungbean, an experiment was conducted as a factorial in based on randomized complete block design with three replications in Ilam station, Iran during 2008-2009 growing season. This experiment was conducted in four stages on one kind of Mungbean named Gohar. The experimental factors including (80, 110 and 140mm cumulative evaporation from class A pan) and row spacing (25, 50, and 75cm) were selected. The results of the experiment showed that the varieties affected by the treatment showed significant differences. The highest total yield was obtained in the condition in which evaporation of water was 80mm. Of course some traits such as grain yield did not show a significant difference between the conditions in which evaporation of the irrigation water was 80 and 110mm. The traits under study also showed a significant difference to different raw spacing. Row spacing of 50cm had a higher total yield compared to other raw spaces. It was due to the higher number of pods per plant and grain weight. The interaction of drought stress and row spacing showed that in the condition in which the row space is 50 cm and the evaporation of the irrigation water is 80mm, the highest number of grain is achieved.

Keywords: Stress, Grain yield, Mungbean, Row spacing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
2160 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
2159 Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Authors: Wei Hua Ho

Abstract:

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

Keywords: Jet Engine Test Cell, Unsteady flow, Inlet Vortex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2158 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation

Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz

Abstract:

Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.

Keywords: Froth flotation, gelatinization, sodium hydroxide, starches and flours.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
2157 Numerical Study of Cyclic Behavior of Shallow Foundations on Sand Reinforced with Geogrid and Grid-Anchor

Authors: Alireza Hajiani Boushehrian, Nader Hataf, Arsalan Ghahramani

Abstract:

When the foundations of structures under cyclic loading with amplitudes less than their permissible load, the concern exists often for the amount of uniform and non-uniform settlement of such structures. Storage tank foundations with numerous filling and discharging and railways ballast course under repeating transportation loads are examples of such conditions. This paper deals with the effects of using the new generation of reinforcements, Grid-Anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of different proportions of the ultimate load. Other items such as the type and the number of reinforcements as well as the number of loading cycles are studied numerically. Numerical models were made using the Plaxis3D Tunnel finite element code. The results show that by using gridanchor and increasing the number of their layers in the same proportion as that of the cyclic load being applied, the amount of permanent settlement decreases up to 42% relative to unreinforced condition depends on the number of reinforcement layers and percent of applied load and the number of loading cycles to reach a constant value of dimensionless settlement decreases up to 20% relative to unreinforced condition.

Keywords: Shallow foundation, Reinforced soil, Cyclic loading, Grid-Anchor, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
2156 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Precast Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts in university centers and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the PRCS was in the first rank, and the LSF system ranked second. Also, the PRCS, in terms of performance standards and economics, was ranked first, and the LSF system was allocated the first rank in terms of environmental standards.

Keywords: Multi-criteria decision making, AHP, SAW, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
2155 Studying the Effect of Climate Change on the Conditions of Isfahan-s Province Tourism

Authors: A.Gandomkar, F. Khorasanizadeh

Abstract:

Tourism is a phenomenon respected by the human communities since a long time ago. It has been evoloving continually based on a variety of social and economic needs and with respect to increasingly development of communication and considerable increase of tourist-s number and resulted exchange income has attained much out come such as employment for the communities. or the purpose of tourism development in this zone suitable times and locations need to be specified in the zone for the tourist-s attendance. One of the most important needs of the tourists is the knowledge of climate conditions and suitable times for sightseeing. In this survey, the climate trend condition has been identified for attending the tourists in Isfahan province using the modified tourism climate index (TCI) as well as SPSS, GIS, excel, surfer softwares. This index evoluates systematically the climate conditions for tourism affairs and activities using the monthly maximum mean parameters of daily temperature, daily mean temperature, minimum relative humidity, daily mean relative humidity, precipitation (mm), total sunny hours, wind speed and dust. The results obtaind using kendal-s correlation test show that the months January, February, March, April, May, June, July, August, September, October, November and December are significant and have an increasing trend that indicates the best condition for attending the tourists. S, P, T mean , T max and dust are estimated from 1976-2005 and do kendal-s correlation test again to see which parameter has been effective. Based on the test, we also observed on the effective parameters that the rate of dust in February, March, April, May, June, July, August, October and November is decreasing and precipitation in September and January is increasing and also the radiation rate in May and August is increasing that indicate a better condition of convenience. Maximum temperature in June is also decreasing. Isfahan province has two spring and fall peaks and the best places for tourism are in the north and western areas.

Keywords: Climate, Tourism, Correlation Test, Tourism Climate Index, Isfahan Province

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
2154 Optimal Design of Flat – Gain Wide-Band Discrete Raman Amplifiers

Authors: Banaz Omer Rasheed, Parexan M. Aljaff

Abstract:

In this paper, a wide band gain–flattened discrete Raman amplifiers utilizing four optimum pump wavelengths is demonstrated.

Keywords: Fiber Raman Amplifiers, Optimization, WaveLength Division Multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
2153 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework

Authors: T. P. Athira, Gibin Chacko George

Abstract:

This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.

Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
2152 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: Input performance, mobile device, slim keyboard, tactile feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
2151 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network

Authors: M. Saravanan, M. Madheswaran

Abstract:

Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.

Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2150 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
2149 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2148 Production of Hydrogen and Carbon Nanofiber via Methane Decomposition

Authors: Zhi Zhang, Tao Tang, Guangda Lu, Cheng Qin, Huogen Huang, Shaotao Zheng

Abstract:

High purity hydrogen and the valuable by-product of carbon nanotubes (CNTs) can be produced by the methane catalytic decomposition. The methane conversion and the performance of CNTs were determined by the choices of catalysts and the condition of decomposition reaction. In this paper, Ni/MgO and Ni/O-D (oxidized diamond) catalysts were prepared by wetness impregnation method. The effects of reaction temperature and space velocity of methane on the methane conversion were investigated in a fixed-bed. The surface area, structure and micrography were characterized with BET, XPS, SEM, EDS technology. The results showed that the conversion of methane was above 8% within 150 min (T=500) for 33Ni/O-D catalyst and higher than 25% within 120 min (T=650) for 41Ni/MgO catalyst. The initial conversion increased with the increasing temperature of the decomposition reaction, but their catalytic activities decreased rapidly while at too higher temperature. To decrease the space velocity of methane was propitious to promote the methane conversion, but not favor of the hydrogen yields. The appearance of carbon resulted from the methane decomposition lied on the support type and the condition of catalytic reaction. It presented as fiber shape on the surface of Ni/O-D at the relatively lower temperature such as 500 and 550, but as grain shape stacked on and overlayed on the surface of the metal nickel while at 650. The carbon fiber can form on the Ni/MgO surface at 650 and the diameter of the carbon fiber increased with the decreasing space velocity.

Keywords: methane, catalytic decomposition, hydrogen, carbon nanofiber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
2147 Successful Management of a Boy with Mild Persistent Asthma (A Longitudinal Case)

Authors: Lubis A., Setiawati L., Setyoningrum A. R., Suryawan A., Irwanto

Abstract:

Asthma is a condition that causing chronic health problems in children. In addition to basic therapy against disease, we must try to reduce the impact of chronic health problems and also optimize their medical aspect of growth and development. A boy with mild asthma attack frequent episode did not showed any improvement with medical treatment and his asthma control test was 11. From radiologic examination he got hyperaerated lung and billateral sinusitis maxillaris; skin test results were house dust, food and pet allergy; an overweight body; bad school grades; psychological and environmental problem. We followed and evaluated this boy in 6 months, treated holistically. Even we could not do much on environmental but no more psychological and school problems, his on a good bodyweight and his asthma control test was 22. A case of a child with mild asthma attack frequent episode was reported. Asthma clinical course show no significant improvement when other predisposing factor is not well-controlled and a child’s growth and development may be affected. Improving condition of the patient can be created with the help of loving and caring way of nurturing from the parents and supportive peer group. Therefore, continuous and consistent monitoring is required because prognosis of asthma is generally good when regularly and properly controlled.

Keywords: Asthma, chronic health problems, growth and development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2146 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
2145 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA

Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval

Abstract:

Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.

Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
2144 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164
2143 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses

Authors: Saleh Alshehri

Abstract:

Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.

Keywords: Thermoelectric generator, thermoelectric cooler, chip hotspots, electronic cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
2142 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2141 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
2140 Finite Element Method for Modal Analysis of FGM

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of a FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FOTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, Modal analysis, Natural frequency, Finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
2139 Quality Function Deployment Application in Sewer Pipeline Assessment

Authors: Khalid Kaddoura, Tarek Zayed

Abstract:

Infrastructure assets are essential in urban cities; their purpose is to facilitate the public needs. As a result, their conditions and states shall always be monitored to avoid any sudden malfunction. Sewer systems, one of the assets, are an essential part of the underground infrastructure as they transfer sewer medium to designated areas. However, their conditions are subject to deterioration due to ageing. Therefore, it is of great significance to assess the conditions of pipelines to avoid sudden collapses. Current practices of sewer pipeline assessment rely on industrial protocols that consider distinct defects and grades to conclude the limited average or peak score of the assessed assets. This research aims to enhance the evaluation by integrating the Quality Function Deployment (QFD) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methods in assessing the condition of sewer pipelines. The methodology shall study the cause and effect relationship of the systems’ defects to deduce the relative influence weights of each defect. Subsequently, the overall grade is calculated by aggregating the WHAT’s and HOW’s of the House of Quality (HOQ) using the computed relative weights. Thus, this study shall enhance the evaluation of the assets to conclude informative rehabilitation and maintenance plans for decision makers.

Keywords: Condition assessment, DEMATEL, QFD, sewer pipelines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
2138 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight

Authors: S. M. Dash, K. B. Lua, T. T. Lim

Abstract:

This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.  

Keywords: Two-dimensional Flapping Airfoil, Thrust Performance, Effective Angle of Attack, CFD and Experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
2137 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: Building sector, heat, LCA, quarter level, systemic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946