Search results for: hybrid fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1210

Search results for: hybrid fiber

490 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
489 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.

Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40
488 Two Different Solutions for Gigabit Ethernet Transmission over POF

Authors: Stefano Straullu, Silvio Abrate, Antonino Nespola, Paolo Savio, Roberto Gaudino

Abstract:

Two completely different approaches for a Gigabit Ethernet compliant stream transmission over 50m of 1mm PMMA SI-POF have been experimentally demonstrated and are compared in this paper. The first solution is based on a commercial RC-LED transmission and a careful optimization of the physical layer architecture, realized during the POF-PLUS EU Project. The second solution exploits the performance of an edge-emitting laser at the transmitter side in order to avoid any sort of electrical equalization at the receiver side.

Keywords: Gigabit Ethernet, Home Networking, Step-Index Polymer Optical Fiber (SI-POF)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
487 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: Multi-functional, polymer composites, radiation shielding, sandwich composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
486 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136
485 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.

Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
484 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

Authors: Pasquale Verde, Giuseppe Lamanna

Abstract:

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Keywords: Fatigue life, strength, composites, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
483 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
482 A Power Conversion System using the Renewable Energies for HEV Charger

Authors: Jin-Hong Kim, Joon Sung Park, Jun-Hyuk Choi, In-Soung Jung

Abstract:

With a development of Hybrid Electric Vehicle(HEV), A photovoltaic(PV) generation system is used for charging batteries in many cases. A dc/dc converter using PV power for a battery charger requires a high efficiency. In this paper, A ZVS boost converter using the renewable energies for HEV charger is proposed. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology are verified.

Keywords: HEV, EV, charger, resonant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
481 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
480 Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Authors: D. V. Srikanth, M. Sreenivasa Rao

Abstract:

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Keywords: ANOVA, FRP Composite, AJC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
479 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
478 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
477 Mathematical Modelling for Separation of Binary Aqueous Solution using Hollow Fiber Reverse Osmosis Module

Authors: Anil Kumar, S. Deswal

Abstract:

The mathematical equation for Separation of the binary aqueous solution is developed by using the Spiegler- Kedem theory. The characteristics of a B-9 hollow fibre module of Du Pont are determined by using these equations and their results are compared with the experimental results of Ohya et al. The agreement between these results is found to be excellent.

Keywords: Binary aqueous solution, modeling, reverse osmosis module, Spiegler-Kedem theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
476 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: Expanding material, heavyweight concrete, self-healing performance, synthetic fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
475 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4708
474 Single and Multiple Sourcing in the Auto-Manufacturing Industry

Authors: Sung Ho Ha, Eun Kyoung Kwon, Jong Sik Jin, Hyun Sun Park

Abstract:

This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.

Keywords: Analytic hierarchy process, Data envelopment analysis, Neural network, Supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
473 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes

Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt

Abstract:

Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.

Keywords: Aeroponic/nutrient film technique, greenhouse, nutrient dynamic, soilless culture, urban farming, waste reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
472 Investigation into the Bond between CFRP and Steel Plates

Authors: S. Fawzia, M. A. Karim

Abstract:

The use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) reinforcement has proven to be an effective technique to strengthen steel structures. An experimental study on CFRP bonded steel plate with double strap joint has been conducted and specimens are tested under tensile loadings. An empirical model has been developed using stress-based approach to predict ultimate capacity of the CFRP bonded steel structure. The results from the model are comparable with the experimental result with a reasonable accuracy.

Keywords: Carbon fibre reinforced polymer, shear stress, slip, effective bond, steel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
471 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
470 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour

Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche

Abstract:

In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.

Keywords: Biopolymers, composites, mechanical properties, poly(lactic acid).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
469 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Authors: Pravesh Chandra Shukla, Kunal Ghosh

Abstract:

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3924
468 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating

Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo

Abstract:

In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.

Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
467 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

Authors: Priyankar Pratim Deka, Sutanu Samanta

Abstract:

This paper describes the development of new class of epoxy based rice husk filled jute reinforced composites. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylenetetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Keywords: Jute, mechanical characterization, natural fiber, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
466 An Enterprise Intelligent System Development and Solution Framework

Authors: Rajendra M. Sonar

Abstract:

The recent trend has been using hybrid approach rather than using a single intelligent technique to solve the problems. In this paper, we describe and discuss a framework to develop enterprise solutions that are backed by intelligent techniques. The framework not only uses intelligent techniques themselves but it is a complete environment that includes various interfaces and components to develop the intelligent solutions. The framework is completely Web-based and uses XML extensively. It can work like shared plat-form to be accessed by multiple developers, users and decision makers.

Keywords: Intelligent System Development Framework, WebbasedIntelligent Systems, Retail Banking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
465 Heat Generation Rate and Computational Simulation for Li-Ion Battery Module

Authors: Ravichandra R., Srithar Rajoo, Tan Lit Wen

Abstract:

In recent years Li-Ion batteries getting more attention among the Electrical Vehicles (EV) and Hybrid Electrical Vehicles (HEV) energy storage. Li-Ion has shown extended power density and light weight compared to other batteries readily available in the market. One of the major drawbacks in Li-Ion batteries is their sensitivity to the temperature. If the working temperature is beyond the limit, that could affect seriously on the durability and performance of Li-Ion battery. Thus Battery Thermal Management (BTM) is the most essential in adapting Li-Ion battery to the EVs and HEVs.

Keywords: Li-Ion battery, HEV/EV, battery thermal management, heat generation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5903
464 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
463 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: Concrete, air-entraining, compressive strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
462 Physical and Chemical Investigation of Polycaprolactone, Nanohydroxyapatite and Poly (Vinyl Alcohol) Nanocomposite Scaffolds

Authors: A.Doustgani, E.Vasheghani- Farahani, M. Soleimani, S. Hashemi-Najafabadi

Abstract:

Aligned and random nanofibrous scaffolds of PVA/PCL/nHA were fabricated by electrospinning method. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters of aligned and random scaffolds were 135.5 and 290 nm, respectively. The obtained scaffolds have a porous structure with porosity of 88 and 76% for random and aligned nanofibers, respectively. Furthermore, FTIR analysis demonstrated that there were strong intramolecular interactions between the molecules of PVA/PCL/nHA. On the other hand, mechanical characterizations show that aligning the nanofibers, could significantly improve the rigidity of the resultant biocomposite nanofibrous scaffolds.

Keywords: Electrospinnig, nanofibrous scaffold, poly (vinyl alcohol), polycaprolactone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
461 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park

Abstract:

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910