Search results for: robust estimation
980 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662979 Almost Periodic Solution for an Impulsive Neural Networks with Distributed Delays
Authors: Lili Wang
Abstract:
By using the estimation of the Cauchy matrix of linear impulsive differential equations and Banach fixed point theorem as well as Gronwall-Bellman’s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for an impulsive neural networks with distributed delays. An example is presented to illustrate the feasibility and effectiveness of the results.
Keywords: Almost periodic solution, Exponential stability, Neural networks, Impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615978 Affine Projection Adaptive Filter with Variable Regularization
Authors: Young-Seok Choi
Abstract:
We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.Keywords: Affine projection, regularization, gradient descent, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609977 The Gasoil Hydrofining Kinetics Constants Identification
Authors: C. Patrascioiu, V. Matei, N. Nicolae
Abstract:
The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.
Keywords: Hydrofining, kinetic, modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022976 A Literature Review on Nutritional Supplements for the Treatment of Obesity
Authors: Monika Nuffer, Wesley Nuffer
Abstract:
The problem of obesity is one that continues to be faced in the United States health care system and across the developing world. Prescription medications are available, but are often very expensive with minimal insurance coverage. The over-the-counter diet aid industry is a robust one, selling billions of dollars in products every year. It is important for clinicians to understand the myriad of different nutritional supplements marketed for obesity, and to weigh the evidence behind these products. This manuscript outlines the most commonly used nutritional supplements currently marketed for weight loss, reviewing the evidence with a focus on the efficacy and safety of these products.
Keywords: Obesity, weight loss, herbal products, nutritional supplements
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893975 Design and Implementation of Cricket-based Location Tracking System
Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko
Abstract:
In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072974 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements
Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach
Abstract:
In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666973 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090972 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857971 Modeling of Crude Oil Blending via Discrete-Time Neural Networks
Abstract:
Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.Keywords: Neural networks, modeling, stability, crude oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263970 Smith Predictor Design by CDM for Temperature Control System
Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.
Abstract:
Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.
Keywords: CDM, Smith Predictor, temperature process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434969 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570968 Variable Step-Size APA with Decorrelation of AR Input Process
Authors: Jae Wook Shin, Ju-man Song, Hyun-Taek Choi, Poo Gyeon Park
Abstract:
This paper introduces a new variable step-size APA with decorrelation of AR input process is based on the MSD analysis. To achieve a fast convergence rate and a small steady-state estimation error, he proposed algorithm uses variable step size that is determined by minimising the MSD. In addition, experimental results show that the proposed algorithm is achieved better performance than the other algorithms.
Keywords: adaptive filter, affine projection algorithm, variable step size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897967 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870966 Combined Hashing/Watermarking Method for Image Authentication
Authors: Vlado Kitanovski, Dimitar Taskovski, Sofija Bogdanova
Abstract:
In this paper we present a combined hashing/watermarking method for image authentication. A robust image hash, invariant to legitimate modifications, but fragile to illegitimate modifications is generated from the local image characteristics. To increase security of the system the watermark is generated using the image hash as a key. Quantized Index Modulation of DCT coefficients is used for watermark embedding. Watermark detection is performed without use of the original image. Experimental results demonstrate the effectiveness of the presented method in terms of robustness and fragility.Keywords: authentication, blind watermarking, image hash, semi-fragile watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001965 The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model
Authors: Chao Yuan, Bao Guang Tian
Abstract:
A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.Keywords: Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188964 Reliable Face Alignment Using Two-Stage AAM
Authors: Sunho Ki, Daehwan Kim, Seongwon Cho, Sun-Tae Chung, Jaemin Kim, Yun-Kwang Hong, Chang Joon Park, Dongmin Kwon, Minhee Kang, Yusung Kim, Younghan Yoon
Abstract:
AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.Keywords: AAM, Face Alignment, Feature Extraction, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477963 Radiation Safety of Population in the Region of NPP-2006/MIR-1200 Site
Authors: V. Bezlepkin, M. Karaseva, A. Frolov, E. Kharchenko, L. Lebedev
Abstract:
The main features of NPP-2006/MIR-1200 design are described. Estimation of individual doses for population under normal operation and accident conditions is performed for Leningradskaya NPP – 2 as an example. The radiation effect on population and environment doesn-t exceed the established normative limit and is as low as reasonably achievable. NPP- 2006/MIR-1200 design meets all Russian and international requirements for power units under construction.Keywords: Accident release, beyond design basis accident (BDBA), nuclear power plant (NPP), radiation safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058962 A Novel Plausible Deniability Scheme in Secure Steganography
Authors: Farshad Amin, Majid Soleimanipour, Alireza Karimi
Abstract:
The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. If suspicion is raised, steganography may fail. The success of steganography depends on the secrecy of the action. If steganography is detected, the system will fail but data security depends on the robustness of the applied algorithm. In this paper, we propose a novel plausible deniability scheme in steganography by using a diversionary message and encrypt it with a DES-based algorithm. Then, we compress the secret message and encrypt it by the receiver-s public key along with the stego key and embed both messages in a carrier using an embedding algorithm. It will be demonstrated how this method can support plausible deniability and is robust against steganalysis.Keywords: Steganography, Cryptography, Information Hiding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192961 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.
Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878960 Image Segmentation and Contour Recognition Based on Mathematical Morphology
Authors: Pinaki Pratim Acharjya, Esha Dutta
Abstract:
In image segmentation contour detection is one of the important pre-processing steps in recent days. Contours characterize boundaries and contour detection is one of the most difficult tasks in image processing. Hence it is a problem of fundamental importance in image processing. Contour detection of an image decreases the volume of data considerably and useless information is removed, but the structural properties of the image remain same. In this research, a robust and effective contour detection technique has been proposed using mathematical morphology. Three different contour detection results are obtained by using morphological dilation and erosion. The comparative analyses of three different results also have been done.Keywords: Image segmentation, contour detection, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427959 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan
Authors: Ahtesham Javaid, Costin S. Bildea
Abstract:
The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.
Keywords: Dehydrogenation and hydrogenation, Reaction coupling, Design and control, Process integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741958 Dichotomous Logistic Regression with Leave-One-Out Validation
Authors: Sin Yin Teh, Abdul Rahman Othman, Michael Boon Chong Khoo
Abstract:
In this paper, the concepts of dichotomous logistic regression (DLR) with leave-one-out (L-O-O) were discussed. To illustrate this, the L-O-O was run to determine the importance of the simulation conditions for robust test of spread procedures with good Type I error rates. The resultant model was then evaluated. The discussions included 1) assessment of the accuracy of the model, and 2) parameter estimates. These were presented and illustrated by modeling the relationship between the dichotomous dependent variable (Type I error rates) with a set of independent variables (the simulation conditions). The base SAS software containing PROC LOGISTIC and DATA step functions can be making used to do the DLR analysis.Keywords: Dichotomous logistic regression, leave-one-out, testof spread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070957 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454956 Robust Probabilistic Online Change Detection Algorithm Based On the Continuous Wavelet Transform
Authors: Sergei Yendiyarov, Sergei Petrushenko
Abstract:
In this article we present a change point detection algorithm based on the continuous wavelet transform. At the beginning of the article we describe a necessary transformation of a signal which has to be made for the purpose of change detection. Then case study related to iron ore sinter production which can be solved using our proposed technique is discussed. After that we describe a probabilistic algorithm which can be used to find changes using our transformed signal. It is shown that our algorithm works well with the presence of some noise and abnormal random bursts.
Keywords: Change detection, sinter production, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459955 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904954 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving
Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Muller
Abstract:
In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.
Keywords: Disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3025953 Comparing Interval Estimators for Reliability in a Dependent Set-up
Authors: Alessandro Barbiero
Abstract:
In this paper some procedures for building confidence intervals for the reliability in stress-strength models are discussed and empirically compared. The particular case of a bivariate normal setup is considered. The confidence intervals suggested are obtained employing approximations or asymptotic properties of maximum likelihood estimators. The coverage and the precision of these intervals are empirically checked through a simulation study. An application to real paired data is also provided.
Keywords: Approximate estimators, asymptotic theory, confidence interval, Monte Carlo simulations, stress-strength, variance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475952 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform
Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy
Abstract:
In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.
Keywords: DWT, contourlet transform, digital image watermarking, copyright protection, geometric attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038951 Case Based Reasoning Technology for Medical Diagnosis
Authors: Abdel-Badeeh M. Salem
Abstract:
Case based reasoning (CBR) methodology presents a foundation for a new technology of building intelligent computeraided diagnoses systems. This Technology directly addresses the problems found in the traditional Artificial Intelligence (AI) techniques, e.g. the problems of knowledge acquisition, remembering, robust and maintenance. This paper discusses the CBR methodology, the research issues and technical aspects of implementing intelligent medical diagnoses systems. Successful applications in cancer and heart diseases developed by Medical Informatics Research Group at Ain Shams University are also discussed.
Keywords: Medical Informatics, Computer-Aided MedicalDiagnoses, AI in Medicine, Case-Based Reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943