Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: Dehydrogenation and hydrogenation, Reaction coupling, Design and control, Process integration.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099328

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4748

References:


[1] G. Towler, S. Lynn, “Novel applications of reaction coupling: use of carbon dioxide to shift the equilibrium of dehydrogenation reactions”, Chem. Eng. Sci., vol. 49, no. 16, pp. 2585-2591, 1994.
[2] P. Altimari, C. S. Bildea, “Coupling Exothermic and Endothermic Reactions in Plug-Flow Reactor−Separation−Recycle Systems”, Ind. Eng. Chem. Res., vol. 47, no. 17, pp. 6685-6697, 2008.
[3] M. R. Rahimpour, M. R. Dehnavi, F. Allahgholipour, D. Iranshahi, S. M. Jokar, “Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review”, Applied Energy, vol. 99, pp. 496-512, 2012.
[4] C. V. Pramod, C. Raghavendra, K. Hari Prasad Reddy, G. V. Ramesh Babu, K. S. Rama Rao, B. David Raju, “Concept and progress in coupling of dehydrogenation and hydrogenation reactions through catalysts”, Journal of Chemical Sciences, vol. 126, no. 2, pp. 311-317, 2014.
[5] M. Messori, A. Vaccari, “Reaction Pathway in Vapor Phase Hydrogenation of Maleic Anhydride and Its Esters to γ-Butyrolactone”, Journal of Catalysis, vol. 150, no. 1, pp. 177-185, 1994.
[6] Kirk–Othmer’s Encylopedia of Chemical Technology, Eds. R. E. Kirk, F. Othmer, J. I. Kroschwitz, M. Howe-Grant, 2nd ed., New York, John Wiley & Sons, 1991.
[7] K. Utsunomiya, K. Takahashi, T. Oshiki, K. Takai, Mitsubishi Kagaku K. K. Jpn. Kokai Tokkyo Koho, JP14-233762, 2002.
[8] H. Koyama, Daicel Kagaku Kougyou K. K. Jpn. Kokai Tokkyo Koho, JP02-255668, 1990.
[9] R. S. Rao, R. T. K. Baker, M. A. Vannice, “Furfural hydrogenation over carbon‐supported copper”, Catalysis Letters, vol. 60, no. 1-2, pp. 51-57, 1999.
[10] Y.L. Zhu, H.W. Xiang, Y.W. Li, H. Jiao, G.S. Wu, B. Zhong and G.Q. Guoc, “A new strategy for the efficient synthesis of 2-methylfuran and γ-butyrolactone”, New Journal of Chemistry, vol. 27, pp. 208-210, 2003.
[11] N. Merat, C. Godawa and A. Gaset, “High selective production of tetrahydrofurfuryl alcohol: Catalytic hydrogenation of furfural and furfuryl alcohol”, Journal of Chemical Technology and Biotechnology, vol. 48, no. 2, pp. 145-159, 1999.
[12] H. Y. Zheng, J. Yang, Y.L. Zhu, G.W. Zhao, “Synthesis of gbutyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation over copper-chromite catalyst”, React. Kinet. Catal. Lett, vol. 82, no. 2, pp. 263-269, 2004.
[13] J. G. M. Bremner, R. K. F. Keeys, “The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran)”, Journal of Chemical Society, pp. 1068-1080, 1947.
[14] I. Tatsumi, K. Kenji, S. Sadakatsu, U. Hiroshi, Euro Patent, 584408, 1994.
[15] ASPENTECH, AspenPlus Getting Started Building and Running a Process Model, ASPEN Technology, Burlington, 2010.
[16] ASPENTECH, AspenDynamics User Guide, ASPEN Technology, Burlington, 2009.
[17] N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, K. Inui, “Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst”, Journal of Molecular Catalysis A: Chemical, vol. 212, no. 1-2, pp. 197-203, 2004.
[18] S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, D. E. Resasco, “Kinetics and mechanism of hydrogenation of furfural on Cu-SiO2 catalysts”, Journal of Catalysis, vol. 277, pp. 1-13, 2011.
[19] P. Altimari, C. S. Bildea, “Integrated design and control of plantwide systems coupling exothermic and endothermic reactions”, Computers & Chemical Engineering, vol. 33, no. 4, pp. 911 – 923, 2009.
[20] C. S. Bildea, A. C. Dimian, “Fixing Flow Rates in Recycle Systems: Luyben's Rule Revisited”, Industrial & Engineering Chemical Research, vol. 42, no. 20, pp. 4578-4585, 2003.
[21] Practical Distillation Control, Ed. W. L. Lyben, New York, Springer, 1993.