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up of categorical independent variables and themabty
Abstract—In this paper, the concepts of dichotomous logisti@ssumption is violated. Model validation with theOkO
regression (DLR) with leave-one-out (L-O-O) werssadissed. To method produces the highest accuracy estimatestHer
illustrate this, the L-O-O was run to determine importance of the ¢|assification problems due to its capability t@qess almost
simulation conditions for robust test of spreadcedures with good 5| of the available data for training the clagsif9].

Type | error rates. The resultant model was thealueted. The In this paper, the concepts of DLR were discuséed, an
discussions included 1) assessment of the accofatye model, and illustration to illustrated DLR as one of the dataning

2) parameter estimates. These were presented hrstrated by . . .
modeling the relationship between the dichotomoepeddent techniques were performed to determine the impoetasi the

variable (Type | error rates) with a set of indegent variables (the Simulation conditions for robust test of spreadcedures on
simulation conditions). The base SAS software doitg PROC the generating ofp-values. The discussions included 1)
LOGISTIC and DATA step functions can be making usedio the assessment of the accuracy of the model, and Zmesder
DLR analysis. estimates. These were presented and illustratemhdel the
relationship between the dichotomous dependentaiiari
Keywor ds—Dichotomous logistic regression, leave-one-out, tegType | error rates) with a set of independent alzlgs (the
of spread. simulation conditions).

. INTRODUCTION ll. PROBABILITY, DLR MODEL, ODDS, AND LOGIT

EARL_Y uses of logistic regression were in biomedical The logistic model describes the expected valu¥ fe.,
studies, but in recent years have also seen muehinus g(y)) in terms of the following “logistic” formula:

business applications, social science researchsetiag, and 1

genetics [1-3]. Although logistic regression hasingd E(Y| X)= " )
popularity, there remains considerable confusiocouglits use 1+exp{-ﬁO -Zﬁj X”}

and interpretation [4-5]. In short, the literate®ems to cover =1

theoretical and mathematical issues related to sfinmgi where

regression more thoroughly than the practical apglied B

aspects needed to put this technique to use [6]. B,
Dichotomous logistic regression (DLR) is a commypet of

generalized linear model that utilizes the logit its link i ) )

function [1]. This particular regression enables ts corresponding to th'subpopulation.

investigate the relationship between a categodattome and For a random variable with values 0 or 1 that

a set of independent variables. The independeidhlas can E(Y| %) =[0x RY=0)+1x RY=1)]= R;Y=1) (2)

be of any form. DLR does not assume linearity ¢dtienship  \where

between the dependent and the independent varialues not P(Y = 0)= probability of the event which coded with 0

require normally distributed independent variablesd does

not assume homoscedasticity. However, it does recghiat

observations to be independent and that the indigmen

variables be linearly related to thegit of the dependent. ~(Success).

variable on the basis of continuous and/or categbri describes the variation among probabilities aovast

the intercept parameter,
a vector of regression parameters, and

X, = row vector of independent variables

(failure), and
P(Y, =1) = probability of the event which coded with 1

independents; to determine the percentage of w@i&m the P(Y) = i} 1 _ 3)
dependent variable which has been explained by the ' k

independents; to rank the relative importance dependent 1+exp| B, -2 B,%;

variables; to assess interaction effects and tcenstahd the - = -

impact of covariate control variables [7-8]. Theodds of success for thd" group of some eveiniis defined

The L-O-O classification approach which does naunee @s the ratio probability of success to the prolighif failure
the assumption of normality was then used to astess !-€-
accuracy of the DLR model. This is because the wataade
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R statistics, one for a model that includes onlyititercept and
odds = ﬁ another includes intercept and covariates. Deviascéhe
! difference between two log-likelihood values. Imyaring a
_ k null model () with only the intercept and a model(q4e)
=exp {ﬂ“ ;ﬁixﬂ}' (4) including intercept ané parameters, then the deviance is the
: difference between kgl - (-2LogLmege)[11]. The smaller
the deviance, the better the model fits the data.
The deviance for a large sample given by

In DLR, the dependent variable islagit, which is the
natural logarithm of the odds. That is by takingdoon both
sides of Equation 4, a linear DLR model for togit were

obtain: G; = —ZIr{ﬂj =-2Logl,, ~ (-2L0gl) ()
log(odds) = logi{ P model
P has a chi-square distribution wikhdegrees of freedom, where
=In [1_IP] Lo @and Lioger refer to the likelihood of the null and full
ol models, respectively. This means that the likelthoatio test

-+ k X 5 was used to compare the likelihood of the full nidde. with
=h ;/31 j ®) all the predictors included) with the likelihood tfe null
model (i.e. a model which contained only the icégt). This

where is anal to th afi-test of the model in li
P, = the predicted probability of the event which edawith 'S @nalogous 1o the overak-test of the model in finear
l, and regressions.

X; = independent variabless 1, 2, ... n.
This is the log odds of success to failure for tfe
subpopulation. The logit transformation hereligP /1- ). In any classification method, the percentage ofremir
classification is the primary indicator of goodnest the
method. Classification table (or confusion matiix)used to
show the ability to predict correctly the outcomategory
(dichotomous dependent variable) for all casesdygu2 x 2
tables. It shows all correct and incorrect estimalte fact, the
classification table is used to determine the erate of the
model, which is an evaluation measure of the meadel’
predictive performance. Classification of obsexwadiis done

. . o , by first estimating the probabilitiesl? = P(each observation
In this way, DLR estimates the probability of ateér event belonging to a given group). Table | presented afusion

occurring. Note that DLR calculates the log oddstiof . i \ith a dependent variable with two categoi@ or 1).
dependent, not changes in the dependent |tselfsqbleess of The columns in the table are the two predicted eslof the
the DLR can be assessed by looking at the claagdit table dependent, while the rows are the two observedesati the

‘(’jv_h';];h tabulate; the dcorrectland mczrrect clfa;'.mhms Or: dependent. Each cell contains the number of cdimeotrect
ichotomous  dependent. Also, goodness-of-fit testish o ivrione as the following:

model phl-square IS av_al!able as an |n(_1||c_ator ofdeho TN = the number of correct predictions that andnse is
appropriateness and statistic, the Wald statisticlie used to zero:

test the significance of individual independentafles. FP = the number of incorrect predictions that atance is

one;
FN = the number of incorrect predictions that astance is
The statistic used to assess the overall fit of rtfoelel is zero; and
based on the likelihood function. The null and #hernative TP = the number of correct predictions that anainsgt is
hypotheses for assessing overall model fit arergixe one.
H, : The hypothesized model fits the data.

H, : The hypothesized model does not fits the d . - )
determined using the equation:

Obviously, non rejection of the null is desiredjtdsads to the TN+ TP

conclusion that the model fits the data. Hit ratio = @)
The test statistic for this hypothesis is the itkebd ratio TN+ FP+ FN+ TP

test. The likelihoodL, of a model is defined as the probabilitySensitivity is the ability to predict an event mtly. It is the

that estimated hypothesized model represents {het iata. proportion of observed event responses that werdigted to

To test the null and alternative hypothedeis transformed to be events. Specificity is the ability to predictnan-event

-2LogL The -2LogL statistic is referred to as the likelinoodcorrectly. It is the proportion of observed non+etveesponses

ratio. It has ay® distribution withn-q degrees of freedom that were predicte_o_l _to be non-events. The equations
. . sensitivity and specificity were:
whereq is the number of parameters in the full model [7-8

10]. The output of likelihood ratio test providesgot-2LogL

IV. PERCENT OFCORRECTCLASSIFICATION

The main reason for using tHegit form of output is to
prevent the predicting probabiliti€% from going out of range,
where the required range fd? is [0,1]. Thelogit(P,) is
assumed to be linear, that meansltiteoddsis assumed to be
linearly related tox;.

DLR applies maximum likelihood estimation after
transforming the dependent intdagit variable. Actually, the
maximum likelihood methods are used to estimfteand g, .

Ill. ASSESSMENT OMODEL: FITTING

The hit ratio or percent of correct classificati(CC) is
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TP
Sensitivity = 8
y TP +FN ®

TN
Specificity =— 9
p yTN 9

+FP

TABLE |
CLASSIFICATION TABLE
Predicted
0 1
0 TN FP
1 FN TP

Actual

In a perfect model, all cases will be on the diajaf Table
| and the PCC, sensitivity, and specificity will H00%.
Classification of the observations into these geoisbased on

a cutoff value for p, which is usually assumed to be 0.5. All
observations wherep is greater than or equal to 0.5 are

classified as events and values which are less @thanare
classified as non-events. If the observed sampke gréor
probability of belongs to group 0O is large and #aenple has
prior probability of belongs to group 1 is smalidavice versa,
then 0.5 is not the right cut off value. The cut wére now

depends on the sample proportion of group 1. The

classification table and the classification rateported by
Statistical Analysis Software (SAS) program areaoisd by
using the pseudo-jackknife estimation procedure.

V. LEAVE-ONE-OUT CLASSIFICATION

The data is made up of categorical independentbizs,;
hence the normality assumption is violated. Thessfthe L-
0O-O approach which does not require the assumpdibn
normality is used. The Jackknife-like method alsmwn as
the Lachenbruch’s holdout is a widely used apprdzded on
estimation with multiple subsets of the sample falidation
[12-14]. The L-O-O method represents a special cdse
cross-validation technique [15]. Givencases available in a
dataset, a classifier is trained onl) cases and then is teste
on the case that was left out [16-17]. This proéesspeatech
times until every case in the dataset have bednded once
as a cross-validation instance. The results areaged across

the n test cases to estimate the classifier's prediction

performance [14]. Therefore, this method produbeshighest
accuracy estimates for the classification problghs

Most researchers suggest that L-O-O approach likardg
when the smallest group size is at least five tithesnumber
of predictor variables [18]. One of the charactarssof the L-
0-0O method is that the outside test recognitioe slould be
able to approach the true recognition rate clobebause each
classifier uses almost all the data set leavingesgy.

VI. PARAMETER ESTIMATES AND
IMPORTANCE OFPARAMETERS

The maximum likelihood estimates of parameters wél
used. The coefficient of the independent variakieg the
amount by which the dependent variable will incecas
decrease if the independent variable changes byioiheThe
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square of thé-values give the Walg,” statistic, which can be

used to assess the statistical significance of eadpendent
variable.

A. Wald Test

The test on individual coefficients is based on-lke
statistic referred to as the Wald inference [19\WAId test is
used to test the statistical significance of eamdfficient (3)
in the model. The corresponding null and altermativ
hypotheses are

H,:p,=0, j=0,1... k

H,: B, #0.
The Wald test statistic
W = p ~
s.e.f)

follows the standard normal

(10)

distribution under thell

hypothesis,; = 0. The statistic is essentially the same as the

t-statistic in the linear model. Under the altenvmatiypothesis,
it is asymptotic toy” distribution and is calculated by

Wald = (S fé)J .

Though the Wald test is used by many, it is lessgutul
than the likelihood ratio test. This is becauseWed test is
biased under certain situations. The Wald testnofitésleads
the user to conclude that the coefficient (consetiyehe
corresponding risk factor) is not significant whesality it
indeed is [8]. Certainly, several authors have iified
problems with the use of the Wald statistic. Mer@@] warns
that for large coefficients, standard error isatel, lowering
the Wald y® statistic value. Agresti [1] stated that the

likelihood-ratio test is more reliable for smallngale sizes
than the Wald test. Therefore, this statistic neéalsbe

11)

c]jnterpreted with great caution. In this study, Wald statistic

was considered because it is computationally easy ia
provided automatically in the output of most stata
computer packages, i.e. SAS.

B. P-Value

The p-value for each parameter estimate ﬁf is the

probability of obtaining a value of the test stitiss extreme
as or more extreme (in the appropriate directibanptthe one
actually computed when the null hypothesis is trlibe p-
value (refer to Fig. 1) is given by:
p=P(V>V,) (12)

where

V. X\f,

V, = calculated value of test statistic, and

v = degrees of freedom.
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having lung cancer considered as an event, whitehawving

: .l/ P lung cancer considered as non-event. The binamgpiedent
I ) e variable, smoking status has values smoker or nuker
: : M with non-smoker considered as the reference level.
I 1 For the binary independent variable, smoking statu
I keeping the other variable age constant, the catéts could be
¢ f g obtained. For exampleX, and X, are two specifications of
Vv, Vo 4 these two independent variables smoking statusaged say,
A)p=RPV)< a, reject Hy. B) p=P(P>¥1) >6:, do not reect Fy. X, = (1, 45) and X, = (-1, 45). Here, X, denotes the group
Fig. 1 Thep-value of  distribution of 45-year-old smokers (smoking status = -1), waer,

denotes the group of 45-year-old non-smokers (smgogiatus
= 1). Then, from Equation 13,

The Hy is rejected whenp <o, where o is the level of  OR, ., :exp{( X, = )%)ﬁl.k( X, - )%)’gz}

significance. Thus, the-value for a test can also be defined as

the smallest value ofr for which the null hypothesis can be = exp{ +( 45- 45)132}
rejected. In fact, when controlling the level ofrsficance at =%

a=0.05,

. ) If the estlmate of the2pB coefficient from maximum
p <0.05 rejectH, (referto Figure 1A

p=0.05 accepH, (referto Figure 1E
Note that in general the sample size must be lergeder

likelihood estimation turns out to be, saﬁl = 2.303 then the
estimated odd ratio will bee®*®=10. This indicates that a

for thep-value to be accurate. smoker is ten times more likely to get lung cano@mpared
) against a non-smoker.
C. Odds Ratio Similarly, for the continuous independent variatdige,

Quantification of the relationships of the predistan the keeping smoking status constant, the odds ratiddcoe
logistic model to the dependent variable involvgsagameter optained. For example, sa¥, = (-1, 45) and X = (-1, 21).
called the odds ratio [21]. The odds ratio is thtor of the .
odds (refer to Equation 4) of having an outcomeofog group Here, X, denotes the group of 45-year-old smokers, whereas

versus another, that is: X, denotes the group of 21-year-old smokers. Thesm fr
= OddSXA Equation 13,
Xa VS Xg s A .’ .
OSdSAB P ORy v % :exp{( Xy~ %) B+ ( %, - X%)ﬁz}
- / - = exp{((-) -(-D) . +(45-2) 5.}
=¥
exp[,80+z,8 XAJJ If the estimate of the24f, coefficient from maximum

likelihood estimation turns out to be, s@#f, = 0.15Z then

exp[ﬁoJfZﬁ )%,} the estimated odd ratio will be®'*2=1.164. This indicates
that the odds of getting lung cancer increases &% with

each increasing age (year) of a smoker.
= ex Zﬁj(&j— ij)]' (13) 9 age (rean)
i=1 D. Importance of Parameters
Itis normally represented txp(H) or Exp(Est) whereH = The importance of independent variables is detethiby

be 0dds ratios and thp-values. Independent variables that have
influence/importance are those with odds ratiodartan one

interpreted by transforming the values into odd®sausing Or odds ratio less than one, wiphvalues significant (<0.05).

the exponential function. The odds ratio can be aog- An odds ratio greater than one means a non-refertnel

negative number. When tiiexp(H) has the value 1, it indicates independent variable will be classify into the dvgroup. An

that the sample is predicted to belong to the eamdt vice odds ratio less than one imply that the refereneeell

versa. independent variable will be classified into themvgroup.
The odd ratios could also be interpreted by evagahow

the unit changes i, affect Exp(H) Suppose there is an

example of lung cancer occurrences, and the purfmse

analyze the predictors of lung cancer, namely sntpktatus,

and some other variable, e.g. age representingndnaous

variable. Hence the dependent variable is dichotemavith

k
Zﬁj(xAj—xBj). Significant Wald values can only
j=1
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TABLE Il TABLE Il
CATEGORICAL INDEPENDENTV ARIABLES AVAILABLE FOR ENTRY CATEGORICAL INDEPENDENTVARIABLES AVAILABLE FOR ENTRY
Variable  Variable Label Level Level Label
DISTR Type of BETA(0.5,0.5)  Symmetric Model Information
distribution platykurtic Data Set WORK.TRAINING
FLEISHMAN1  Skewed platykurtic Response Variable pval05
FLEISHMAN2  Skewed normal- Number of Response Levels 2
tailed Model binary logit
G=.225/H=.225 Skewed leptokurtic Optimization Technigue Fisher's scoring
(severe)
G=.76/H=-.098  Skewed leptokurtic Number of Observations Read 84
G=0/H=.225 Symmetric Number of Observations Used 84
leptokurtic Sum of Frequencies Read 25257
N(0,1) Standard normal Sum of Frequencies Used 25257
SHAPE Skewness of SKEW Skewed
distribution SYMM Symmetric Response Profile
TAIL Kurtosis of LEPT Leptokurtic Ordered Value pval05 Total Frequency
distribution PLAT Platykurtic 1 1 1860
NORM Normal 2 0 23397
GSIZE Total group 120 N=120 Probability modeled is pval05=1.
size 60 N=60
GSCOND Group size INCRO5 Increment of 5
increments INCR10 Increment of 10 TABLE IV
EQUAL Equal sample size ASSESSMENT OfMODEL

Part A. Model Fit Statistics
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

VIl. DLR TODETERMINE THEIMPORTANCE OFSIMULATION

CONDITIONS FORROBUST TEST OFSPREADPROCEDURES ON  __Model Fit Statistics

—— A .
GENERATING OFP-VALUES Criterion Intercept Only Intercept and Covariates
-2 Log L 13283.252 12449.159
This paper performed an illustration of DLR as afehe
data mining techniques to determine the importanc¢éhe PartB. '-'kle't')h?Od lTat'O T?]SI_ . B
simulation conditions for robust test of spreadcedures on —¢1d ?gsta Null Hypot gsr:is_'sﬁgé‘o 5 T
the generating op-values. That is, DLR was conducted t0jrainood Ratio 832.0926 9 <0001

evaluate the particular simulation conditions thdt produce
robust Type | error rates, i.e. Type | error rattest fall in
[0.045, 0.050]. Essentially, the database confligt-@alues &
attendant information for tests of spread proceslétnam [22].
In particular, these procedures were comparedhfair Type |

distributions within the context of 6 one-way inéedent
groups’ designs. The designs differed by total damsfze &
group sample sizes;

(a) degree of sample size inequality;

(b) shape of the population distribution; and

(c) values of trimming.

For each condition five thousand replications weraducted
and the nominal level of significance was 0.05.

The simulation conditions in this study were typeks
distribution, skewness of distribution, kurtosisdi$tribution,
total group size, and unbalanced group size inones@&efer
to Table IlI). These were also the independent kesain the
analysis. The 7 distributions simulated in [22] avarsed in
this study, they were

1) The Fleishman [23] transformation of the staddar

normal distribution into a skewed platykurtic diigtrtion
with skewnessy, = 0.5 and kurtosisy, =-0.5.

@The -2 Log L for Intercept Only-@ Logl,,, ) is defined below, whers

andN; are observed frequencies for the dichotomous depenariableNg+

N1=N, total sample size.

( . -2 Logl,, =-2[ NyIn(N,/ N )+ N,In(N/ N )

error rates when data were obtained from 7 differen , 2log, =
=

-2 23391 (23397 25257) +1860 (1860 25P57p 664162 =132832
¢ G=(2Logl,,)- (2 Logl, ) = 13283.252 - 12449.159 = 834.0¢

4) A g and h distribution [24] wherg =h = 0. This is the
standard normal distribution with) =y, = 0.

5)A g=0 and h=0.225 long-tailed distribution with
»n =0 and y,=154.84, representing
leptokurtic distributions.

6)A g=0.76 and h=-0.098distribution with

7, =2andy, =€  representing leptokurtic
distribution.

7) A g =0.225and h = 0.225 distribution. This is also a
long-tailed skewed leptokurtic distribution
(y, = 4.9,y, =4673.9, but more severe than (6).

The skewness of a distribution was either symmetric

symmetric

skewed

2) A second Fleishman transformation of the stehdaskewed, while the kurtosis of distributions rang&dm

normal distribution into a skewed normal-tailedtdlgition
with y, = 0.75 andy, = 0.

3) The Beta (0.5, 0.5) distribution representingnsyetric
platykurtic distributions withy, = 0 andy, = -1.5.

International Scholarly and Scientific Research & Innovation 4(2) 2010

platykurtic to normal-tailed to leptokurtic distttions. The
total sample group size was designed as 60 (aveyayele
size of 20) or 120 (average sample size of 40).urti@lanced
group size increments followed 3 conditions of skrgize
equality or inequality. These were equal sampleessiz
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TABLE V
BIAS-ADJUSTEDCLASSIFICATION TABLE

Classification Table

Prob Correct Incorrect Percentages
Level Event Non-Event Event Non-Event Correct Sensitivity Specificity
0.070 1290 13821 9576 570 59.8° 69.4 59.1

# correct % 5 corregl,, +COMEEHo.,) /Nx100%= 1290882) /25257 x100% = 59.8

TABLE VI
ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Stgﬂg?rd Wald XZ Pr > ChiSq Exp(Est)

INTERCEPT 1 -2.7557 0.0295 8745.0258 <.0001 0.064
DISTR BETA(0.5,0.5) 1 0.4032 0.0575 49.2344 <.0001 1.497
DISTR FLEISHMAN1 1 -0.5912 0.0817 52.3279 <.0001 0.554
DISTR FLEISHMAN2 1 -0.9563 0.0958 99.6994 <.0001 0.384
DISTR G=.225/H=.225 1 0.1100 0.0630 3.0517 0.0807 1.116
DISTR G=.76/H=-.098 1 -0.5950 0.0823 52.2690 <.0001 0.552
DISTR G=0/H=.225 1 0.5496 0.0548 100.4790 <.0001 1.733
SHAPE SKEW 0 0 .
TAIL LEPT 0 0
TAIL PLAT 0 0 . . . .
GSIZE 120 1 0.2210 0.0249 78.6714 <.0001 1.247
GSCOND INCRO5 1 0.1596 0.0338 22.2760 <.0001 1.173
GSCOND INCR10 1 -0.1810 0.0362 25.0339 <.0001 0.834

increments of 5 (moderately unequal sample sizasd This equation was estimated using the iterativehdfis
increment of 10 (extremely unequal sample sizes).tle scoring method. This is the default method in SASOE
other hand, the dependent variable had two valdes, LOGISTIC as shown in the Table Ill. The term “Surh o
representingp-values falling in [0.045, 0.050] and O fgr Frequencies” meant the total number of frequenaieshe
values falling outside of this interval after restiure it. response profile. Since the data in this study mid have
Originally, there were one scale dependent variahtbfive missing values, the sum of frequencies read and usze
independent variables with 25,257 records. The fiveame, i.e. 25,257. The numbers of observations aeddised
independent variables contain the information dewvels of were 84.
types of distributions, 2 levels of skewness ofritisitions, 3 Note the level-ordering displayed in the responsdilp. By
levels of kurtosis of distributions, 2 levels ofabgroup size default, PROC LOGISTIC in SAS system will attempt t
and 3 levels of group size increments. However, thmodel (i.e. predict the probability of) the lowef the two
preliminary run on DLR showed that with this pantar values of the dependent variable, i.e. PVALO5=0wkler,
variables structure, there were zero parametemasds. This this was not the desired condition. Thus, the DESBEG
was a sign of presence of multicollinearity. Howevthis option (refer to line 000102 in Appendix B) wasluded to
study still believes that the collinear variablee eelevant to override this system default. Now, the value 1 beeahe
the model. Thus, the data was restructured by irddgfthe reference level. Hencegy was defined as the probability of
variables. Since theSsHAPE and TAIL were fixed in the being in group 1.
distributions. The combination of the independeatiables These probabilities were used to group the sinunati
formed 42 combinations of levels after restructime original conditions combinations (the independent variableR)e
independent variables. For each of the 42 comloingtithe classification depended upon a cutoff point. Gexadisi, SAS
number of records in group 0 and group 1 were @ufdr set the cutoff probability as 0.5. In order to defia cutoff
PVALO5 (dependent). Hence, there were 42 combination pfobability, the option PPROB was invoked (refer litwe
multiplied by 2 levels ofPVALO5 equaling 84 records. The 000107 in Appendix B). Simulation conditions condtions
total number of counts for the 84 records will bg257. with predicted values that exceeded the classifinatutoff
Basically, this was the number of records before ttata were classified as group 1, while those with predicvalues
restructured. Using these combination, DLR wasgueréd to smaller than the cutoff were classified as group@his case,
examine relationship between the dichotomous degendthe value of the cutoff point for classifying caseas 0.07
variable (Type | error rates) with a set of indegemt (1860/25257).
variables (the simulation conditions). The restuued Since the data were in count form, it is indicatedPROC
variables are given in Appendix A. LOGISTIC by writing the FREQ statement (refer tmeli
000105 in Appendix B). The main effects model waescsied
_ in the MODEL statement, which also included theiam
The DLR model estimated was SCALE=NONE and AGGREGATE (refer both to line 000106
PVALG = 4 + AOSTR g, SHAFES TwfSIZE+A GOON (14) in Appendix B). The SCALE option enabled the PROC

LOGISTIC to treat each unique combination of the

A. Dichotomous Logistic Regression (DLR)
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independent variable values as a distinct groupoimputing
the goodness-of-fit statistics. The SCALE=NONE estatnt
specifies that no correction was needed for theedson
parameter. The AGGREGATE option grouping
observations into subpopulations and compute tloamgess-
of-fit test statistics for them.

The results for simulation conditions are discussethis
manner:

1) Assessment of model

2) Percent of correct classification

3) Parameter estimates

B. Assessment of Model

In order to assess the model fit, the likelihootibrgest was
used.The test statistic for the null hypothesis that eldfits
the data, was the likelihood ratio test involving likelihoods.
The model fit statistics from Table IV, Part A shexivthe
model convergence status and statistics for testiagoverall
model significance.

The output of the likelihood ratio test providedotv2LogL
statistics. The result of testing this hypothesid thep-value

for this decision was presented in Table IV, ParfTBe x°

was 834.0929. Thp-value was less than 0.0001 implying the

order to interpret the DLR model, the logits wehamged into
odds ratio. The odd ratios can use to determinepeddent
variables that were included in the DLR model ttagbrobust

thelype | error rates.

Noticed that there were some peculiar values far th
estimate (refer to Table VI). These were zero altieat
obtained forISHAPEkew TAIL gpr andTAILp . This was due
to the presence of multicollinearity in the dateheTSAS
output gave three equations (refer to Equationd 75with
regard toSHAPEew TAIL epr and TAILp a1 They were

SHAPEs;kew =0.14286 * INTERCEPT — 1.14286 *
DISTReeisimanz + 0.85714 * DISTR- 2251= 225+ 0.85714 *
DISTRG= 76/H=.008- 1.14286 * DISTR=o/h=.225 (15)

TAIL gpr =0.14286 * INTERCEPT — 0.14286 *
DISTRgera©5,05— 0.14286 * DISTR gisHman: — 1.14286 *
DISTReeistmanz + 0.85714 * DISTR- 225/1=225+ 0.85714 *

DISTR:- 76/h=.00s* 0.85714 * DISTR-g/1=225 (16)
TAIL pLat = DISTRgera©5,05+ DISTRe eistmant —
DISTReLeisHMAN2 17)

rejection ofH,. This indicated that the overall DLR model was

highly significant and at least one and perhapsoélithe

parameter estimates were significantly differeatrfrzero. The
model with the independent variables was signifigabetter
then the model with just the intercept. In otherradg the
inclusion of the independent variables significanthproved
model fit and contributed to predicting the likeldd of being
classified as group 1. Other than the testing oflehdit, L-O-

O classification table is used to shows the acguicthe

model to assign records into correct group.

C. Percent of Correct Classification

In any classification method, the hit ratio isldtie primary
indicator of the goodness of the method. Usualg tlass
display of this assessment was in the form of ogeticy table
of observations versus predicted grouping. In SASOE
LOGISTIC, this was given as bias-adjusted classifin table
(refer to Table V).

In computing the bias-adjusted classification talBAS
used an approximate pseudo jack-knife method knasvthe
L-O-0O technique. Essentially, for a given obsexatia model
was fitted by excluding an observation from theadatd then
classifies the observation using the resulting rhodée
CTABLE option (refer to line 000107 in Appendix Bllowed

Notice that these three equations were linear coatioins
of the variables that were non-zero estimates. d hasiables
were not included in the model because of theiedin
relationships. However, this did not imply thatytheere not
important variables in the model. This actually liegp that
these variables were characteristics of other kb$a that
existed in the model.

The SHAPE and TAIL variables are the skewness and
kurtosis of the distributions, respectively. EadBstribution
comes with known values of skewness and kurtosigés.
Therefore, the SHAPE and TAIL were inherent in the
distribution. Technically, a linear relationship ncabe
formulated for each distribution, i.e.
DISTR =4 + 4, SHAPE +4,TAIL,, where i = type of
distribution. Then, there were seven of these égustfor all
the seven distributions in the data set. Base upese seven
equations, they can be reformulated into Equatidnslé and
17.

From Table VI, the parameter column showed the
simulation conditions and the second column wadeathels of
the conditions. Each level of the parameter coedisbf
dichotomous dummy variables. Originalp|STR has seven
levels. Reformulating these as dummy variablesgtivere six

one to use L-O-O technique which gave us the uebiasy,mmy variables. Each of the six distributions wampared

estimate of the correct classification. Table V wlas bias-
adjusted classification table produced by CTABLEiap
This particular model constructed from the trainthata set
has 59.8% hit ratio caused by moderate high seitgiti
(69.4%) and specificity (59.1%).

D. Parameter Estimates

The maximum likelihood method was used to estintiage
parameters. Then, the Wald chi-square was usedstotlie
statistical significance of each of the coeffici¢f). Next, in
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against the standard normal distribution. The reftthe
variables undergo the same process, where a leasl w
considered as a reference level and every othesl leas
compared against this reference level.

Then, the Wald y* was used to test the statistical

significance of each of the coefficieg). From Table VI, the
DLR equation for the model could be express as
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PVALOS, g = ~27557 +0403ASTR ey

0.591DISTR, misimana~ 0-9563DISTR 6w
0.595MISTR_ /4. oo - 0-5496DISTR 1, s+
0.221@SIZE,,, +0.1596SCONRQres -
0.181@SOND) ry0
These estimates described the relationship betwisen
dependent variables and the independent variatese the

dependent variable was on thagit scale. From the same
table, all parameters were significant under Wakt,texcept

for DISTRs= 225H =-.22¢-

The coefficients £) in the model Equation 18 wetfegits.
To interpret the model, tHegits was changed into odds ratio.
This was represented in Exp(Est) column. From Tafjehe
independent variables that have influence/importaatthose
with Exp(Est)>1 or Exp(Est)<l1, wittp-values significant
(<0.05). The variables that influenced classifizatinto group

(18)

1 were  DISTR3ETA(0.50.5 DISTRs=0/H=.225:
D|STR\|(0,1), GS|Zﬁ_20, GSCON[PNCRO5 and
GSCONRQuAL -

The odds ratio for DISTRseTa(0.50.5 favored the

BETA(0.5,0.5) distribution over N(0,1) distribution. This
meant that the likelihood of getting good ratesi'gpe | error

more likely to give good rates of Type | error cargd with
unbalanced group size increments by ten units ddairom a
(10, 20, 30) design or (30, 40, 50) design (repriisg by
GSCONDNCR10)- The latter design represented extremely

unequal sample size.

VIII.

The most common method to use for analyzing dath wi
binary response variables is DLR. In DLR model, régponse
variable is Bernoulli distributed mean value retat® the
independent variables through the logit transforomatThe
SAS system facilitates the building of a programcémduct
DLR analysis by using PROC LOGISTIC and DATA stép.
this study, the response variables are binary randkriables,
taking values 1 and 0, where 1 represengivglues falling in
[0.045, 0.050] and O fomp-values falling outside of this
interval. In order to test hypotheses in DLR, thelihood
ratio test was have used. Wald test gadalues, and odds
ratios were used to analyze maximum likelihoodnestis. In
this study, independent variables that were inadude the
DLR model to obtained robust Type | error ratedirfglin
[0.045, 0.050] were successfully determined. That the
model should include either symmetric platykurtic
distributions (DISTRsgTA(0.5,0.5) OF symmetric leptokurtic

distributions DISTRs=g/H=-.225), With a (35, 40, 45) design.

CONCLUSION

using theBETA(0.5,0.5)distribution was about twice that of The (35, 40, 45) design indicated conditions oféatotal

the N(0,1) distribution, when other variables were contralled,

The same result was observed for tB8STR;-g/H=-225
distribution. Noticed that thBETA(0.5,0.5was a symmetric
playkurtic distribution withy, = 0 and y,= -1.5 and the
G=0/H=.225was a symmetric leptokurtic distribution.

On the contrary, the odds ratios @ISTR: EiISHMANT

DISTRe EisHMAN2:  DISTRs= 76/H=-098 favored the
N(0,1) distribution. This meant that when type of diafitibn
was standard normal, it was more likely to resulgood rates
of Type | error compared with the skewed platykurti
distribution (DISTR: gisumany: the skewed normal-tailed

distribution (DISTR:gisHmAN2) and the skewed leptokurtic

sample size GSIZg »g) and moderately unequal sample size

(GSCONLNCRO5)-

Usually, if one is interested to do predictionnabdel, the
hit ratio of 80% is necessary. However, it is nefuired in
this study because the hit ratio is used for thpgse of model
accuracy assessment. Hence, the model constructed ot
be used for prediction purpose.

APPENDICES

APPENDIXA
RESTRUCTUREVARIABLES FORTRAINING DATA SET

[a)]

distribution (DISTR5= 76/H=-.098)- o w w g 8 5
From the same table, noticed that the odds ratio fog 5 < <=,:' 5‘; K < 8
GSIZR g favored GSIZE g over GSIZE. This meant _= ° o ke e & °
. . . BETA(0.505) SYMM PLAT 60 EQUAL 0 551

that the likelihood of.gettlng good rates of Typerror using BETA(0505 SYMM PLAT 60 EQUAL 1 59
large total sample sizeN€120) was about twice that of thegs BETA(0.50.5) SYMM PLAT 60 INCRO5 0 533
small total sample sizé&E60). 4 BETA(0.5,0.5) SYMM PLAT 60 INCRO5 1 59
The odds ratio for GSCONQNcRos favored the 5  BETA0505  SYMM  PLAT 60  INCR10 0 565
BETA(0.50.5) SYMM PLAT 60 INCR10 1 37

GSCONGNCcRos over GSCONRRguaL - However, the odds 7 BETA(0.5,0.5) SYMM PLAT 120 EQUAL 0 550
. 8  BETA(0.505) SYMM PLAT 120 EQUAL 1 51
ratio for GSCONLNcRi1g favored theGSCONIRQuAL OVEr g9 BETA(0.5,0.5) SYMM PLAT 120 INCRO5 0 515
- .10 BETA(0.505) SYMM PLAT 120 INCR0O5 1 82
GSCONDQNCcR1o- This meant that unbalanced group sm%l BETA(0505) SYMM PLAT 120 INCRIO 0 560
increments by five units obtained from a (15, 28), @esign or 12 BETA(0.50.5) SYMM PLAT 120 INCR10 1 32
; ; 13 FLEISHMAN1 SKEW PLAT 60 EQUAL 0 567

(35, 4(_)’ 45) de_5|gn (representing BSCONLNCRos) W‘_"ls 14 FLEISHMANL SKEW PLAT 60 EQUAL 1 36
more likely to give good rates of Type | error cargd with 15 FLEISHMAN1 SKEW PLAT 60  INCRO5 0 594
balanced group size such as (20, 20, 20) desigh0o40, 40) ig Etg:gzmmi gigw Eﬁ$ 28 :mgggg (1) 234
design. While, balanced group siz&SCONRQuAL) WaS g  FESHMANL SKEW PLAT 60  INGR1O 1 1
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19 FLEISHMAN1 SKEW PLAT 120 EQUAL 0 572 APPENDIXB
20 FLEISHMAN1 SKEW  PLAT 120 EQUAL 1 30 PARTIAL PROGRAM FORLOGISTICREGRESSION OFSIMULATION CONDITIONS
21 FLEISHMAN1 SKEW PLAT 120 INCRO5 0 584 000001/ ko |
22 FLEISHMAN1  SKEW PLAT 120 INCRO5 1 24 000002 /* DICHOTOMOUS LOGISTIC REGRESSIO */
23 FLEISHMAN1 SKEW PLAT 120 INCR10 0 585 000003/ kkdddekdek |
24 FLEISHMAN1  SKEW PLAT 120 INCR10 1 13 000004
25 FLEISHMAN2 SKEW NORM 60 EQUAL 0 586 000005Data trainingsimcond42;
26 FLEISHMAN2 SKEW NORM 60 EQUAL 1 13 000006LABEL DISTR ='Type of distribution’
27 FLEISHMAN2  SKEW NORM 60 INCRO5 0 571 000007 SHAPE =Skewness of distribution'
28 FLEISHMAN2 SKEW NORM 60 INCRO5 1 23 000008  TAIL ='Kurtosis of distribution’
29 FLEISHMAN2  SKEW NORM 60 INCR10 0 596 000009 GSIZE =Total group size'
30 FLEISHMAN2 SKEW NORM 60 INCR10O 1 12 000010 GSCOND =Unbalanced group size increments'
31 FLEISHMAN2  SKEW NORM 120 EQUAL 0 568 000011LENGTHDISTR $13;
32 FLEISHMAN2 SKEW NORM 120 EQUAL 1 14 000012INPUT DISTR $ SHAPE $ TAIL $ GSIZE $ GSCOND $PVALO5
33 FLEISHMAN2  SKEW NORM 120 INCRO5 0 582 000013 COUNT @@;
34 FLEISHMAN2 SKEW NORM 120 INCRO5 1 16 000014CARDS
35 FLEISHMAN2 SKEW NORM 120 INCR10 0 592 O000015BETA(0.5,0.5) SYMM PLAT60 EQUAL 0 551
36 FLEISHMAN2  SKEW NORM 120 INCR10O 1 10 000016BETA(0.5,0.5) SYMM PLAT60 EQUAL 1 59
37 G=.225/H=.225 SKEW LEPT 60 EQUAL 0 564 :
38 G=.225/H=.225 SKEW LEPT 60 EQUAL 1 33
39 G=.225/H=.225 SKEW LEPT 60 INCRO5 0 552 888823!\‘(0’1) e
40 G=.225/H=.225 SKEW LEPT 60 INCRO5 1 45 OOOlOOi?UN'
41 G=.225/H=.225 SKEW LEPT 60 INCR10 0 581 000101 '
42 G=.225/H=.225 SKEW LEPT 60 INCR10 1 18 —
43 G=.225/H=.225 SKEW LEPT 120 EQUAL 0 573 OOOlOZEE(S)gé,\?S;:\?JIC DATA=TRAININGSIMCOND42
44 G=.225/H=.225 SKEW LEPT 120 EQUAL 1 32 . . .
45 G=.225/H=.225 SKEW LEPT 120 INCRO5 0 552 000103 QI'LAAIEEEDLEL%%EE)_ N(0.1)) SHAPEREF=SYMM)
46 G=.225/H=.225 SKEW LEPT 120 INCRO5 1 54 -, - .
47 G=.225/H=.225 SKEW LEPT 120 INCR10 0 540 888182 S::EZE(REF_ 69) GSCONDREF=EQUALY;
- - QCOUNT;
jg g:?g%ﬂ‘ggg glﬁg\\//vv I':EEI égo ||5'\clgch§leO 1 o 6455 5 000106 MODEL PVALOS = DISTR SHAPE TAIL GSIZE GSCOND/
50 G=76/H=-098 SKEW LEPT 60 EQUAL 1 n 000107 igélélé—:glg;\J:EAGGREGATEEXPB RSQUARECTABLE
51 G:'76/H:"098 SKEW" LEPT 60 INCRO5 0 584 000108 /*PPROB is the prior probabilities to tlaenple size*/
52 G=76/H=-098 SKEW LEPT 60 INCROS 1 16 4109 QUTPUTOUT=PROBSLRREDPROBS(CROSSVALIDATE);
53  G=76/H=-098 SKEW  LEPT 60 INCR10 0 585 000110 /*PROBSLR saves posterior probabilitiesclessification*/
54  G=.76/H=-.098 SKEW LEPT 60 INCR10 1 15 000111RUN:
55 G=.76/H=-.098 SKEW LEPT 120 EQUAL 0 570 '
56 G=.76/H=-.098 SKEW LEPT 120 EQUAL 1 18
57 G=.76/H=-.098 SKEW LEPT 120 INCRO5 0 581 ACKNOWLEDGEMENT
58 G=.76/H=-.098 SKEW LEPT 120 INCRO5 1 19 .
50  G=76/H=-098 SKEW LEPT 120 INCRIO o 583 The authors vyoulpl like to acknowledge the worzktﬂeq to
60 G=76/H=-098 SKEW LEPT 120 INCR10 1 16 this paper publication funded by the School of Mathtical
61 G=0/H=.225 SYMM LEPT 60 EQUAL 0 570 Sciences, and supported by the Universiti Sainsajés
62  G=0/H=.225 SYMM LEPT 60 EQUAL 1 27 Fgllowship.
63 G=0/H=.225 SYMM  LEPT 60 INCRO5 0 530
64 G=0/H=.225 SYMM  LEPT 60 INCRO5 1 79
65 G=0/H=.225 SYMM LEPT 60 INCR10 0 572 REFERENCES
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67 G=0/H=.225 SYMM LEPT 120 EQUAL 0 542 York: Wiley, 2002.
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