Search results for: image segmentation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1652

Search results for: image segmentation.

962 Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model

Authors: Hu Haibo, Zhao Hong

Abstract:

Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.

Keywords: Gaussian mixture model, real-time tracking, sequence image, gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
961 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network

Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad

Abstract:

This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.

Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
960 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA

Authors: Deepti Tamrakar, Pritee Khanna

Abstract:

This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.

Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
959 SURF Based Image Matching from Different Angle of Viewpoints using Rectification and Simplified Orientation Correction

Authors: K.M.Goh, M.M.Mokji, S.A.R. Abu-Bakar

Abstract:

Speeded-Up Robust Feature (SURF) is commonly used for feature matching in stereovision because of their robustness towards scale changes and rotational changes. However, SURF feature cannot cope with large viewpoint changes or skew distortion. This paper introduces a method which can help to improve the wide baseline-s matching performance in term of accuracy by rectifying the image using two vanishing points. Simplified orientation correction was used to remove the false matching..

Keywords: Affine, orientation, projective, SURF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
958 A Study of Visitors, on Destination Image, Environmental Perception, Travel Experiences and Revisiting Willingness in Xinshe Leisure Agriculture Park

Authors: Chu-Chu, Liao

Abstract:

The main purpose of this study is to analyze the relationship of leisure agriculture park visitors on tourist destination image, environmental perception, travel experiences and revisiting willingness. This study used questionnaires to Xinshe leisure agriculture park visitors- targeted convenience sampling manner total of 636 valid questionnaires. Valid questionnaires by descriptive statistics, correlation analysis and multiple regression analysis, the study found that: 1. The agricultural park visitors- correlations exist between the destination image, perception of the environment, tourism experience and revisiting willingness. 2."Excellent facilities and services", "space atmosphere comfortable" and "the spacious paternity outdoor space" imagery, of visitors- "revisiting willingness predict. 3. Visitors- in leisure agriculture park "environmental perception" and "travel experience, future revisiting willingness predict. According to the analysis of the results, the study not only operate on the recommendations of the leisure farm owners also provide follow-up study direction for future researchers.

Keywords: Leisure farms, image, travel experience, revisiting willingness, environmental perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
957 Contourlet versus Wavelet Transform for a Robust Digital Image Watermarking Technique

Authors: Ibrahim A. El rube, Mohamad Abou El Nasr , Mostafa M. Naim, Mahmoud Farouk

Abstract:

In this paper, a watermarking algorithm that uses the wavelet transform with Multiple Description Coding (MDC) and Quantization Index Modulation (QIM) concepts is introduced. Also, the paper investigates the role of Contourlet Transform (CT) versus Wavelet Transform (WT) in providing robust image watermarking. Two measures are utilized in the comparison between the waveletbased and the contourlet-based methods; Peak Signal to Noise Ratio (PSNR) and Normalized Cross-Correlation (NCC). Experimental results reveal that the introduced algorithm is robust against different attacks and has good results compared to the contourlet-based algorithm.

Keywords: image watermarking; discrete wavelet transform, discrete contourlet transform, multiple description coding, quantization index modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
956 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification

Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman

Abstract:

A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.

Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
955 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
954 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

Authors: Bandula-Heva, T., Dhanasekar, M.

Abstract:

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3455
953 Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools

Authors: Lenka Techniková, Maroš Tunák, Jiří Janáček

Abstract:

This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.

Keywords: 3D reconstruction of the surface, image analysis tools, distribution of the pills, spatial data analysis tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
952 Video Quality Control Using a ROI and Two- Component Weighted Metrics

Authors: Petra Heribanová, Jaroslav Polec, Michal Martinovič

Abstract:

In this paper we propose a new content-weighted method for full reference (FR) video quality control using a region of interest (ROI) and wherein two-component weighted metrics for Deaf People Video Communication. In our approach, an image is partitioned into region of interest and into region "dry-as-dust", then region of interest is partitioned into two parts: edges and background (smooth regions), while the another methods (metrics) combined and weighted three or more parts as edges, edges errors, texture, smooth regions, blur, block distance etc. as we proposed. Using another idea that different image regions from deaf people video communication have different perceptual significance relative to quality. Intensity edges certainly contain considerable image information and are perceptually significant.

Keywords: Video quality assessment, weighted MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
951 Mining and Visual Management of XML-Based Image Collections

Authors: Khalil Shihab, Nida Al-Chalabi

Abstract:

This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.

Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
950 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique

Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain

Abstract:

Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.

Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
949 Loop Back Connected Component Labeling Algorithm and Its Implementation in Detecting Face

Authors: A. Rakhmadi, M. S. M. Rahim, A. Bade, H. Haron, I. M. Amin

Abstract:

In this study, a Loop Back Algorithm for component connected labeling for detecting objects in a digital image is presented. The approach is using loop back connected component labeling algorithm that helps the system to distinguish the object detected according to their label. Deferent than whole window scanning technique, this technique reduces the searching time for locating the object by focusing on the suspected object based on certain features defined. In this study, the approach was also implemented for a face detection system. Face detection system is becoming interesting research since there are many devices or systems that require detecting the face for certain purposes. The input can be from still image or videos, therefore the sub process of this system has to be simple, efficient and accurate to give a good result.

Keywords: Image processing, connected components labeling, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
948 Computer Generated Hologram for SemiFragile Watermarking with Encrypted Images

Authors: G. Schirripa Spagnolo, M. De Santis

Abstract:

The protection of the contents of digital products is referred to as content authentication. In some applications, to be able to authenticate a digital product could be extremely essential. For example, if a digital product is used as a piece of evidence in the court, its integrity could mean life or death of the accused. Generally, the problem of content authentication can be solved using semifragile digital watermarking techniques. Recently many authors have proposed Computer Generated Hologram Watermarking (CGHWatermarking) techniques. Starting from these studies, in this paper a semi-fragile Computer Generated Hologram coding technique is proposed, which is able to detect malicious tampering while tolerating some incidental distortions. The proposed technique uses as watermark an encrypted image, and it is well suitable for digital image authentication.

Keywords: Asymmetric cryptography, Semi-Fragile watermarking, Image authentication, Hologram watermark, Public- Key Cryptography, RSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
947 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique

Authors: Mohammad A. Khasawneh

Abstract:

Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure.

The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab.

Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.

Keywords: Friction, Image Analysis, Polishing, Statistical Analysis, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
946 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis

Authors: R. Rama Kishore, Sunesh

Abstract:

This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.

Keywords: Digital watermarking, discrete cosine transform, chaotic grid map, entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
945 Elimination Noise by Adaptive Wavelet Threshold

Authors: Iman Elyasi, Sadegh Zarmehi

Abstract:

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
944 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.

Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
943 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin

Abstract:

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
942 Stroke Extraction and Approximation with Interpolating Lagrange Curves

Authors: Bence Kővári, ZSolt Kertész

Abstract:

This paper proposes a stroke extraction method for use in off-line signature verification. After giving a brief overview of the current ongoing researches an algorithm is introduced for detecting and following strokes in static images of signatures. Problems like the handling of junctions and variations in line width and line intensity are discussed in detail. Results are validated by both using an existing on-line signature database and by employing image registration methods.

Keywords: Stroke extraction, spline fitting, off-line signatureverification, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
941 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
940 Tree Based Decomposition of Sunspot Images

Authors: Hossein Mirzaee, Farhad Besharati

Abstract:

Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.

Keywords: Quad tree decomposition, sunspot image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
939 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: Day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4519
938 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
937 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551
936 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

Authors: Dragos Nicolae VIZIREANU

Abstract:

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
935 DWT Based Image Steganalysis

Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal

Abstract:

‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.

Keywords: Steganalysis, Moments, Wavelet Domain, KNN, K*, LWL, Naive Bayes Classifier, Neural networks, Decision trees, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
934 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
933 The Robust Clustering with Reduction Dimension

Authors: Dyah E. Herwindiati

Abstract:

A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paper

Keywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702